
Math 30 Introduction to Problem Solving
Final, Friday, March 17, 2000

Directions: Do as many as you can

1. Let a, b, c be integers which satisfy a2 + b2 = c2. Prove that abc must
be even.

2. (a) Let a1, a2, a3 be three integers and assume that they all have the
same parity (are all either even or are all odd). Prove that 16|(a3 − a1)(a2 −
a1)(a3 − a2). (b) Let a1, a2, a3, a4 be four integers and assume that they all
have the same parity. Prove that
27|(a4 − a3)(a4 − a2)(a4 − a1)(a3 − a2)(a3 − a1)(a2 − a1).

3. Let ai, i = 1, 2, 3, 4, 5, 6 be integers. (a) Consider all the 15 differences
aj − ai. Prove that at least two of these are divisible by 3. Can you prove
that, in fact, three must be divisible by 3?
(b) Prove that at least one of the differences aj − ai is divisible by 5.
(c) Prove that 28335|Πj<i(aj − ai).

(d) Is this best possible, that is, is the gcd of all such products 28335?

4. (a) Find the shortest path from the point (3,5) to the point (9,3) which
touches the y−axis.

(b) Find the shortest path from the point (3,5) to the point (9,3) which
touches both the y−axis and the x−axis.

5. (a) Let (V, E) be a graph on n vertices. Prove that either there is
an isolated vertex, that is, a vertex without any neighbors, or else there are
vertices x 6= y such that x and y have the same number of neighbors.

6. Let (V, E) be a graph on n vertices. Assume that whenever x and y
are vertices with the same number of neighbors then they have no common
neighbors. Let x be a vertex of valency k with k as large as possible and let
E(x) = {y1, y2, . . . , yk} the notation chosen such that |E(yj)| ≤ |E(yj+1)|.
Prove that |E(yj)| = j for each j = 1, 2, . . . , k.

7. Let OP3(n) be all ordered triples (A1, A2, A3) of subsets of Ωn =
{1, 2, . . . , n} such that
I. A1 ∪ A2 ∪ A3 = Ωn

II. A1 ∩ A2 = A1 ∩ A3 = A2 ∩ A3 = ∅. That is, ordered triples of partitions
of Ωn. Set opn(3) = |OP3(n)| the number of such ordered partitions.
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(a) How many elements (A1, A2, A3) ∈ OP3(n) with |A1| = k(≤ n)?

(b) Use (a) to get a summation formula for op3(n).

(c) Show that op3(n + 1) = 3op3(n). (Hint: Think about how you can take
an element of OP3(n) and extend it to an element of OP3(n + 1).) Compare
(b) and (c). What explains this identity.
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8. Let a1, a2, . . . , an be a sequence of positive integers. You may transform
these integers by either of the following rules:
I. Multiply some ai by 2.
II. Subtract 1 from each of the ai.

(a) Show that it is possible to by a series of such moves to transform the
sequence to one with all positive terms and at least one of the terms equal
to 1.

(b) Suppose a sequence has one or more ones and it is transformed in the
following way: multiply each of the ones by 2 and then subtract one from
each of the numbers. Compare the sum of the original sequence with the
resulting sequence.

(c) Choose a sequence in the connected component of the original se-
quence with the sum of the terms as small as possible. Prove each of the
terms is one.

9. (a) Let a, b, c be three integers each divisible by 2n. Prove that there
at least one of the three numbers a + b, a + c, b + c is divisible by 2n+1.

(b) Prove that amongst 2n+1 integers there is a subset of them with 2n

elements whose sum is divisible by 2n.

10. We form a sequence of numbers as follows. The first number is
a1 = 21. We pick an arbitrary two digit number ab and then a2 = 21ab (a
four digit number). a3 = 21abab and so on. Prove that no matter what the
choice of ab the sequence contains an infinite number of composites.

11. Prove that there are no integer solutions to x2 + y2 = 100003.

12. Prove that there are no integer solutions to x2 − y2 = 30.

13. Is it possible to cover a 7 × 7 chessboard with dominos.

14. Let a be a real number. Then one of the four numbers a, 2a, 3a, 4a is
at most 1

5
from an integer.

15. (a) Let P1, . . . , P6 lie on a circle and be the vertices of a regular
hexagon. Let the vertices be paired and the chords drawn between the pairs.
Prove that two must be of equal length.

(b) Prove the same thing for the eight vertices of a regular octagon.

(c) Prove the same thing for the vertices of a regular 2n−gon.
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16. (a) Let a, b ≥ 0. Prove that a+b
2 ≥

√
ab.

(b) Assume a, b, c ≥ 0. Prove that (a + b)(a + c)(b + c) ≥ 8abc.

17. Nine points are given the R3 and all the 36 lines segments joining
them are drawn. They are colored either red or blue. For a vertex x let R(x)
be the red edges containing x and B(x) the blue edges containing x. Prove
that there is a vertex x such that |R(x)| 6= 3.
(b) Assume that there are no red triangles. Prove that every vertex belongs
to a blue tetrahedron.

18. At midnight a virus is placed into a colony of 2000 bacteria. Each
second each virus destroys one bacterium, after which all the bacteria and
viruses divide in two. Prove that eventually all the bacteria will be destroyed
and determine the exact time (up to a second) at which this will occur.

19. One hundred black checkers and one hundred red checkers are laid
out horizonetally on a set of boxes labelled 1 to 200. Numbers 1 and 200 are
black. Prove that there is a number n < 200 such that there are an equal
number of black and red checkers on squares 1 to n.

20. Given 8 points in the plane. Prove that there exists a line such that
4 points lie on each side of it.

21. The number abc = a × 102 + b × 10 + c with a, b, c ∈ {0, 1, 2, . . . , 9}
is prime. Can b2 − 4ac be a perfect square.

22. (a) The points in the plane are colored using three different colors.
Prove that it is possible to find a rectangle with all vertices the same color.
(b) The points in the plane are colored using one hundred different colors.
Prove that it is possible to find a rectangle with all vertices the same color.

23. Seventeen points, no three collinear, are given in the plane and all the
line segments joining them are drawn. The segments are colored red, blue
and yellow. Prove that there exists a monochromatic triangle, i.e. a triangle
with all three edges the same color.

24. Seven coins are on a table with all heads up. On any move you can
turn over four of them. Is it possible to ever get them so that all they are all
tails up?

25. Let a, a + 2, a + 4, a + 6 be four positive integers in an arithmetic
progression with common difference 2. Is it possible for their product to be
a perfect square?
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26. Define a sequence of integers in the following way: a0 = 1. Suppose
a0, a1, . . . , a2k−1 have been defined. Then

a2k , a2k+1, . . . , a2k+1−1 = 2a0, 2a1, . . . ,2a2k−1.

For example, a1 = 2a0 = 2. Now a0, a1 = 1, 2 and hence a2, a3 = 2, 4 and then
a4, a5, a6, a7 = 2, 4, 4, 8 and so on. Prove that an = 2l where there are l ones
in the binary expansion of n. For example, 6 = 4 + 2 = 22 + 21 = 110. Thus
a6 = 22 = 4 which is confirmed by the above sequence. As another example,
lets try n = 13. 13 = 8+4+1 = 23+22+1 = 1101 and so we should have a13 =
23 = 8. Extending the sequence to 15 we have 1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16
and the 14th element in the sequence is, indeed, eight.

27. In Pascals triangle how many numbers are odd in the nth row. Note
that in the triangle 1 is the zeroth row and 11 is the first row.

28. Let T be an acute triangle. Inscribe a rectangle R in T with one side
along a side of T. Then inscribe a rectangle S in the triangle formed by the
side of R opposite the side on the boundary of T, and the other two sides
of T, with one along the side of R. For any polygon X, let A(X) denote the
area of X. Find the maximum value, or show no maximum exists, of

A(R) + A(S)

A(T )

where T ranges over all triangles and R, S over all rectangles as above.

29. Find, with explanation, the maximum value of f(x) = x3 −3x on the
set of all real numbers x satisfying

x4 + 36 ≤ 13x2.

30. Inscribe a rectangle of base b and height h in a circle of radius one,
and inscribe an isosceles triangle in the region of the circle cut off by one
base of the rectangle (with that side as the base of the triangle). For what
value of h do the rectangle and the triangle have the same area?

31. Let R be the region consisting of the points (x, y) of the Cartesian
plane satisfying both |x| − |y| ≤ 1 and |y| ≤ 1. Sketch the region R and find
its area.
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32. Let A be an n × n matrix and v1, v2, . . . , vn+1 vectors satisfying

Avi = λivi

for some real numbers λi (so that vi is eignevectors with eigenvalues λi.)
Assume that any n of these vectors are linearly independent. Prove that all
the λi are equal.
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