GEOMETRY PROBLEMS

Consider a triangle in the plane all of whose vertices are lattice points. Let A denote the area of the triangle, B the number of lattice points on the boudary, and I the number of lattice points in the interior of the triangle. Determine a relationship between A, B and I.

What is the greatest number of regions you can divide the plane into with 3 lines? With 4 lines? With 5 lines? With n lines.

Given n planes in three space let s_n be the greatest number of connected components into which these planes divide the space. Can you find a recursion on n which will allow you to determine a closed formula for s_n ? Can you find a combinatorial/extremal argument to determine this number?

Suppose \emptyset is a finite set of point in the plane with the property that the line through any two of them contains as least one other point from \emptyset . Prove that all the points of \emptyset are collinear (lie on a single line).

Let \emptyset be a finite set of points in the plane with the property that the triangle formed by any three of them has area at most one. Prove that there is a triangle of area at most four which covers all the points.

Let \emptyset be a set of points in the plane with the property that every point in \emptyset is a midpoint of a line segment joining two points of \emptyset . Prove that \emptyset is an infinite set.

Given 2n points in the plane, with half colored red and half colored blue prove that it is possible to pair them in such a way that the line segments joining the pairs do not intersect.

Every point in the plane is colored one of three colors: Red, Blue, Yellow. Prove there exists a line segment of length one which has endpoints the same color.

Let $P_1, P_2, \ldots, P_{1999}$ be distinct points in the plane. Draw the line segments $P_1P_2, P_2P_3, \ldots, P_{1998}P_{1999}, P_{1999}P_1$. Is it possible to draw a line L which intersects each of these line segments in an interior point?

Each of ten line segments has length greater 1 but less than 55. Prove that it is possible to select three such that they form the sides of a triangle.

Every point in the plane is colored red or green. Prove that there is an equilateral triangle with its three vertices the same color.