2/25.2) Nicely done. Good observation to see that if there is a solution with $(1, y, z)$ then there is a $z^{\prime} \neq z$ such that $\left(1, y, z^{\prime}\right)$ is also solution and in this way generate an infinite number of solutions. Of course, there is nothing special about 1 so that whenever (x, y, z) is a solution there is a $z^{\prime} \neq z$ such that $\left(x, y, z^{\prime}\right)$ is a solution. Then, you can permute the entries. Try and prove by descending that every solution can be arrived at this way: Make a graph on solutions: $(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ if and only if $\{x, y, z\} \operatorname{cap}\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ has two elements. Define a path from one solution s to s^{\prime} to be a sequence $s=s_{0}, s_{1}, \ldots, s_{n}=s^{\prime}$ such that $s_{i} \sim s_{i+1}$ for all i. Suppose you have an arbitary solution $s=\{x, y, z\}$. You want to show that there is a path from $(1,1,1)$ to s. Let $s_{m}=\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ be in the connected component of s and chosen so that $x^{\prime}+y^{\prime}+z^{\prime}$ is minimal but not $(1,1,1)$. Get a contradiction.

