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Chapter 1

Introduction

1.1 A Description of the Course

This course is intended as a capstone experience for mathematics students
planning on becoming high school teachers. This is not to say that this is
a course in material from the high school curriculum. Nor is this a course
on how to teach topics from the high school curriculum. Rather, this is
a course informed by the high school curriculum, by which we mean that
the topics in this course are issues raised in the high school curriculum (but
rarely dealt with there). Thus students should not expect the course to deal
directly with the high school curriculum, although we hope that during the
course, students will ask questions that they have concerning that material,
including how what we do in the course relates to the curriculum. At the
end of many of the sections, we try to include some brief words about how
the material from the section might be put to use by a high school teacher,
but in truth, mostly this material is here to provide a good background for
the teacher, since what is being taught in schools today will probably not be
what is taught in 10 years, and almost certainly is not what will be taught
in 20 years. Consider that in the 1960s, “New Math” was in vogue with
set theory taught at all levels of the curriculum (from first through twelfth
grade), clock (or modular) arithmetic taught in elementary school, as well
as arithmetic in other bases, while in 1980, the “back to basics” movement
took over. The new math was replaced by emphasis on rote skills. Then in
1989, the NCTM standards were introduced, causing changes, such as the
elimination of proofs from some high school geometry texts (not what the
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6 CHAPTER 1. INTRODUCTION

NCTM standards called for, but what the textbook writers decided), and
now we have the 2000 NCTM standards and their move to include more of
the fundamental mathematics, but still with an emphasis on problem solving.
Consequently, the goal of the collegiate mathematics education degree is not
just to prepare students for teaching now, but to give them the tools to be
prepared for teaching twenty years from now.

In a nutshell, this course could be titled “Why do we need all these num-
bers?” We follow a (mostly) historical development of the real (and Complex)
number system, from the Greek Mathematicians through to modern analysis
and Dedekind cuts. We begin with a discussion of fractions and rational
numbers, and prove that many numbers are irrational. In particular, at the
end of chapter 2, we prove that e and π are irrational. Knowing that irra-
tional numbers exist, we then discuss what numbers can be represented as
exact lengths using the tools of straightedge and compass. This naturally
leads us to prove the classical Greek impossibility theorems on doubling the
cube and trisecting the general angle. Given that lengths are not enough, we
next move on to whether we can represent all real numbers using radical signs
and the standard operations. We show that while we can solve cubic equa-
tions this way, these numbers can be deceptive. At the end of that chapter,
we give a brief discussion of the impossibility of solving the general quintic
equation by radicals, but necessarily, we do not give a proof of this. Finally,
having exhausted other methods of defining the real numbers, in the next
chapter, we discuss how one defines the real numbers today using Dedekind
cuts, and why one is forced to do this. The subsequent chapters are really
extras, which we are happy if we get to, but are not necessary to cover in the
course if time does not permit.

1.2 What is Mathematics?

The question at the title of this section is extremely difficult. Mathematicians
themselves disagree on this question, with some taking a purist view like G.H.
Hardy, others taking a more applied approach, and still others giving an “I
know it when I see it definition.” In this book, we shall suggest that a brief
answer to this question might be that there are four “Ps” to mathematics,
pattern, precision, proof, and problem solving.

Mathematics is the science of patterns. The first obvious pattern is that
of number. Three people, three hats, and three camels all have something in
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common. This is the recognition of a pattern. Seeing how numbers relate to
each other usually requires looking for patterns. Of course, patterns become
more and more difficult to track down so we come up with more and more
complicated techniques to look for them. One of the standard threads of the
NCTM standards that fits in here is that of different representations of the
same thing. These different representations are often the recognition of the
same pattern showing up in two very different items. You have seen this in
your mathematics background when you discussed the idea of isomorphism
in abstract algebra, congruence in geometry, or even modular equivalence of
integers in discrete mathematics. Even elementary school students see this
when they first learn that different fractions can stand for the same quantity.
One of the greatest discoveries of mathematics is the fundamental theorem
of calculus. It is really the recognition that the area under curves and the
slopes of curves fit together into a pattern. The idea of calculus is finding
the patterns relating these two curves.

To study patterns, you must be precise in your thinking. Thus mathe-
matics is about precision, such as carefully defining what is meant by a term.
The English language is fuzzy. By their very nature, words are not precise.
As a result, mathematics emphasizes definitions throughout. One often talks
about the idea underlying a topic being important, and it is. However, be-
ing able to work with this idea is also important, and it is difficult to do so
without carefully defined terms.

To verify that the patterns we see actually occur, we turn to proof. There
are numerous examples of where people see patterns when they don’t really
exist. Proof keeps us from treating these patterns as real. For any triangle
in the plane, the sum of its angles is 180 degrees. What about on a sphere?
If you have studied spherical geometry you know that the sum of the angles
of a spherical triangle is greater than 180 degrees, but if you were living
on a very large sphere and could only draw relatively small triangles, you
might not believe that triangles have angle sum larger than 180 degrees.
Why? Because all of the triangles you could easily draw would have angle
sum extremely close to 180 degrees, and your measuring tool would not be
sufficiently accurate to tell you this. On a more complicated side, every odd
number is of the form 4k + 1 or 4k + 3 where k is an integer. Here is an
interesting question: Is it the case that for any positive integer n the set of
primes less than n of the form 4k + 3 has as many or more members than
the set of primes less than n of the form 4k + 1? If we try and solve this
question by example, then we would list the primes of each form and come



8 CHAPTER 1. INTRODUCTION

up with two lists:

4k + 3 : 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 87, 91, . . .

4k + 1 : 5, 13, 17, 29, 37, 41, 53, 57, 61, 73, 81, 89, 97, . . .

Judging from these lists, the answer is yes for all n ≤ 100. In fact, the answer
is yes for all n < 10000. However, the answer is not always yes. For some
very large n, the answer is no. Examples teach us a lot, but only with proof
can we be sure the generalizations of these examples are true.

The most interesting proofs, however, are those that are wrong. Through-
out history, famous mathematicians have published false proofs. Why do
they make mistakes? Frequently because some fundamental truth has been
misunderstood. Finding a mistake is usually an indication that something
hasn’t been understood properly. Often, it is finding these mistakes that
leads to the most innovative ideas.

Mathematics is also about problem solving. We use the tools of precision
and pattern recognition to solve problems. Precision allows us to discover the
fundamental knowledge needed to solve a problem, and looking for patterns
informs us of how to gain this knowledge. Proofs then provide us with a way
to make a convincing argument about why our solution is correct. Indeed,
many will argue that this is the most important aspect of mathematics.

Given this definition, why do we teach mathematics? Or rather, what
role does mathematics play in a liberal education. Again, even mathemati-
cians disagree in answering this question. The popular answer today is that
we teach mathematics because it is everywhere around us, which it is. Math-
ematics is used in some way in almost all professions. However, this answer
might leave us a little uncomfortable because it seems to imply that once
computers and machines take over the basic needs, only the programmers
would need mathematics education. One answer to this is that many of the
uses cannot be easily foreseen, so an experience of discovering the uses will
make it easier to find other (sometimes new) uses. A second reason for teach-
ing mathematics is cultural literacy. To make informed decisions, people need
to be able to interpret graphs, formulas, and data that they will encounter.
For example, how do we understand polling data or assess the risks and
benefits of public policy options if we are innumerate? From the other side,
an understanding of mathematics allows one to present information quickly
and easily. These are important arguments, and it is unfortunate that many
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people lack the level of mathematical knowledge to understand information
today, even though much of this understanding can be gained with a very
basic level of mathematical understanding. Another important reason to
study mathematics is that it improves critical thinking skills. It encourages
one to think critically in a mathematical way, geometrically, arithmetically,
algebraically, and logically. Moreover, proof teaches absolute argumentation
so that the validity of other arguments can be weighed against mathematical
arguments. G. Polya says it best,

If the (mathematics) student failed to get acquainted with this or
that particular geometric fact, he did not miss so much; he may
have little use for such facts later in life. But if he failed to get
acquainted with geometric proofs, he missed the best and simplest
examples of true evidence and he missed the best opportunity to
acquire the idea of strict reasoning. Without this idea, he lacks a
true standard with which to compare alleged evidence of all sorts
aimed at him in modern life.

In short, if general education intends to bestow on the student the
ideas of intuitive evidence and logical reasoning, it must reserve
a place for geometric proofs. [8]

This view argues that it is not the individual facts of mathematics that mat-
ter, but rather the ways of thinking it encourages. The study of mathematics
allows us to learn, practice, and master abstract, logical, numerical, and ge-
ometric ways of thinking, and to use them to solve problems.

1.3 Background

In this course, we will assume students have familiarity with the concepts
from a first course in Abstract Algebra, Linear Algebra, Discrete Mathemat-
ics (in particular induction and some basic counting identities), and a full
sequence in Calculus. Students may also find it helpful to have had some
experience with basic probability.

During the term we will briefly review some concepts from these areas,
but students are strongly encouraged to have their textbooks from these
classes available while reading this text and studying for this class. Moreover,
students are responsible to review these areas on their own as necessary.
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1.3.1 GCDs and the Fundamental Theorem of Arith-
metic

Given integers a and b, we say that a divides b if there exists an integer n
such that b = an, this is written a|b. Given the integers a and b, the greatest
common divisor or gcd of a and b is the largest integer d such that d|a and
d|b. We now state a very important theorem, which is proven in any discrete
mathematics or abstract algebra class.

Theorem 1.1 (GCD is a linear combination theorem) Let a and b be
two non-zero integers. Then there exist integers s and t such that gcd(a, b) =
as+ bt.

Recall that an integer p ≥ 2 is prime if it has exactly two positive factors,
namely 1 and p itself. Of course, if a is any integer and p is a prime, it follows
that gcd(a, p) is either 1 or p. We can now prove

Theorem 1.2 (Euclid’s Lemma) Let p be a prime and a, b be two inte-
gers. If p|ab, then p|a or p|b.

Proof: Suppose ab = pn where a, b, and p are as above and n is an integer.
Suppose p 6 |a. Then gcd(a, b) = 1 and there exists integers s and t such that
1 = as+ pt. Multiplying by b yields b = abs+ ptb = pns+ ptb and p|b by the
distributive law. Thus either p|a or p|b.
Q.E.D.

From Euclid’s Theorem and induction we obtain the following (which we
will not prove):

Theorem 1.3 (Fundamental Theorem of Arithmetic) Every positive in-
teger greater than 1 has a unique prime factorization. That is, given an
integer n > 1, then n can be written uniquely as

pm1
1 pm2

2 . . . pmkk

where p1 < p2 < . . . < pk are primes and mi is a positive integer for i =
1, . . . , k.
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1.3.2 Abstract Algebra and polynomials

In this section we will talk about polynomials, roots, extension rings, and
fields. In this section, typically we state theorems without proof. Students
who wish to look up proofs are encouraged to do so. In general we restrict our
attention to polynomial rings and subrings of the complex numbers (and often
the real numbers), because these are the cases which will be used throughout
the text rather than the more general context discussed in most algebra texts.

A number field F is a subset of the complex numbers that is closed under
addition, subtraction, multiplication, and (non-zero) division. The finite
series

p(x) = a0 + a1x+ . . .+ anx
n, ai ∈ F

is said to be a polynomial over F . If an 6= 0, we say that p(x) has degree n.
The set of all polynomials over F is denoted by F [x]. We have the natural
multiplication and addition of polynomials, and F [x] is an integral domain
under these operations.

A root of the polynomial f(x) is an element a ∈ F such that f(a) = 0.

Theorem 1.4 (Rational Root Theorem) Suppose f(x) = a0+. . .+anx
x,

an 6= 0 is a polynomial with integer coefficients. If b
c

is a root of f(x) with
gcd(b, c) = 1, then b|a0 and c|an.

Proof: Suppose

a0 + a1
b

c
+ . . .+ an

(
b

c

)n
= 0.

Then multiplying the entire equation by cn−1 we have

a0c
n−1 + a1bc

n−2 + . . .+ an−1b
n−1 +

anb
n

c
= 0.

Thus the left hand side is an integer. But this implies that anb
n/c is an

integer. As gcd(b, c) = 1, the Fundamental Theorem of Arithmetic (or a more
general form of Euclid’s Lemma) implies that c|an. Multiplying through by
cn

b
will allow a similar argument to show that b|a0.

Q.E.D.

The polynomial p(x) is said to divide the polynomial f(x) if f(x) =
p(x)q(x) for some polynomial q(x) ∈ F [x], and we write p(x)|f(x). A poly-
nomial p(x) of degree n > 0 is irreducible if whenever p(x) = q(x)f(x) then
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either deg(q(x)) = 0 or deg(f(x)) = 0. Given two polynomials f(x) and
g(x), a polynomial h(x) is a common divisor of f(x) and g(x) if h(x)|f(x)
and h(x)|g(x). The polynomial h(x) is the greatest common divisor of f(x)
and g(x) if whenever d(x) is also a common divisor of f(x) and g(x) then
deg(d(x)) ≤ deg(h(x)). Note that the greatest common divisor of two poly-
nomials is only unique up to multiplication by a constant (when F is a field).

Theorem 1.5 (Division Algorithm for Polynomials) Let f(x) and g(x)
be two non-zero polynomials over some field F . Then there exist unique poly-
nomials q(x) and r(x)in F [x] such that

f(x) = g(x)q(x) + r(x)

where either r(x) = 0 or deg(r(x)) < deg(g(x)).

We can now easily see that a is a root of the polynomial f(x) if and only if
f(a) = 0 by applying the Division Algorithm with g(x) = x−a and plugging
in a.

Theorem 1.6 (GCD is a Linear Combination) Let f(x) and g(x) be in
F [x] (where F is a field). Suppose d(x) is the greatest common divisor of f(x)
and g(x). Then there exist polynomials a(x) and b(x) in F [x] such that

d(x) = a(x)f(x) + b(x)g(x).

This last theorem is used to prove a version of Euclid’s Lemma for poly-
nomials, but we state it here in particular because of what it means in the
special case where the common divisor is 1.

In particular, if p(x) is an irreducible polynomial of degree n, then the
set of residues of polynomials upon division by p(x)

Rp(x) = {a0 + a1x+ . . .+ an−1x
n−1|ai ∈ F}

is a field under the addition and multiplication operations defined below.
Given f(x) and g(x) in Rp(x), we define

f(x)g(x) = r(x)

where r(x) is the remainder of f(x)g(x) divided by p(x). Under this opera-
tion, Rp(x) is a field which contains the field F as a subfield. The field Rp(x)
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is naturally isomorphic with the quotient field F [x]/(p(x)), and Rp(x) can be
thought of as a set of representatives of the cosets of the ideal (p(x)).

A better way of seeing the multiplication in Rp(x) is to look specifically at
p(x). If p(x) = b0 + . . .+ bnx

n, then in Rp(x) we are simply demanding that

xn = − 1

bn
(b0 + . . . bn−1x

n−1).

Note that this makes x a “root” of p(x) in the field Rp(x).
For example, suppose F = Q is the field of rational numbers and p(x) =

x2− 2. If p(x) is reducible, then p(x) must have a linear factor. But a linear
factor would imply that p(x) has a rational root a/b. Using the rational root
test, however, we can see that the only possible roots are ±1 and ±2, which
clearly are not roots. Hence p(x) is irreducible. Thus, Rx2−2 = {a+ bx|a, b ∈
Q} is a field. As

(ax+ b)(cx+ d) = acx2 + (ad+ bc)x+ bd,

in Q[x], and the division algorithm yields

acx2 + (ad+ bc)x+ bd = (ac)(x2 − 2) + [(ad+ bc)x+ bd+ 2ac],

we have that multiplication in Rx2−2 is

(ax+ b)(cx+ d) = (ad+ bc)x+ bd+ 2ac.

Next consider the subfield

Q[
√

2] = {a
√

2 + b|a, b ∈ Q}
of the real numbers. In this field, multiplication is defined by

(a
√

2 + b)(c
√

2 + d) = 2ac+ bd+ (ad+ bc)
√

2.

Comparing this to the multiplication for Rx2−2 we see that the two definitions
are identical except that we use

√
2 in place of x in Q[

√
2]. In this way, we

produce “extension” fields in a natural way.
We point out that Rp(x) can be defined for any polynomial p(x), but that

it is a field only when p(x) ∈ F [x] is irreducible over the field F . This is
because to get inverses of elements, you need for p(x) to be irreducible over
F as you use the GCD is a Linear Combination Theorem.

We also note that if we replace Q with Z (the integers) in the above
example, the closure laws still hold. That is the set

Z[
√

2] = {a+ b
√

2|a, b ∈ Z}
is closed under multiplication and addition. This is an easy exercise.
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1.4 Problems

1. Show Z[
√

2] is a subring of Q[
√

2], by showing that multiplication and
division are closed operations over Z[

√
2].

2. Recall that Q[
√

3] = {a + b
√

3 | a, b ∈ Q}. Define addition and mul-
tiplication in Q[

√
3] and show how this multiplication is similar to

multiplication for Rx2−3, the residue field for x2 − 3 over Q[x].

3. Continuing the previous problem, define a correspondence between
Q[
√

3] and {(
a 3b
b a

)
| a, b ∈ Q

}
.



Chapter 2

Rational and Irrational
Numbers

In this chapter we shall be concerned with understanding the definition of
the rational numbers, how this definition can be used to define the mathe-
matical operations, how it corresponds to decimal representations of these
numbers, and why we must expand our definition of number beyond the
rational numbers. To get us started, take a few minutes and consider the
following question.

What do we mean by the number one third?

In thinking about this question, think about the following:

• What role does this number play in different contexts?

• How does our meaning work with the mathematical operations (addi-
tion, multiplication, etc.)?

• What makes the concept of fractions difficult for students to under-
stand?

In answering the first of these three questions, you probably discovered that
we have many different contexts in which we use fractions. For example, we
can think of one-third of thirty objects as being ten, or we can think of one
third of a stick, or we simply have a point on the number line. Other answers

15
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might be 1
3

or 2
6
. The affect of these multiple representations shows up in

both the understanding and the proper definition of a rational number.
To effectively carry out the operations using fractions, one third should

denote an equivalence class, so that when we add fractions, we choose the
most useful element of that class for the problem at hand. When you think
about the difficulties many mathematics majors have operating with equiv-
alence classes, it suddenly becomes easier to understand why students who
do not like math often have so much trouble adding fractions.

To carefully define the rational numbers, one must use the language of
equivalence classes. As usual, we use Z to denote the integers (both positive
and negative). Let

F = {a
b
| a, b ∈ Z, b 6= 0}.

Let ∼ denote the equivalence relation on F given by a
b
∼ c

d
if and only if

ad = bc. For the remainder of this section, when we use the word fraction,
we shall mean an element of F .

We define the operations of addition and multiplication on F by

a

b
+
c

d
=

ad+ bc

bd
, and

a

b
· c
d

=
ac

bd
.

There is no guarantee that the definitions yield fractions in lowest terms. In
fact, under our definition, 1

2
+ 1

2
= 4

4
, which is then equivalent to 1

1
. This

example illustrates how the formula differs from what you “know” is the
correct definition for adding fractions with the same denominator, namely
a
c

+ b
c

= a+b
c

. Our definition does give an equivalent answer ac+bc
c2

, since

c(ac+ bc) = ac2 + bc2.

Definition. The set Q of rational numbers is the set of equivalence classes
of F under the operations (using

[
a
b

]
to denote the equivalence class of a

b
)[

a
b

]
+
[
c
d

]
=
[
ad+bc
bd

]
and

[
a
b

]
·
[
c
d

]
=
[
ac
bd

]
.

These definitions of addition and multiplication for rationals are forced
upon us so that when equivalent fractions are added, we get as our answers
equivalent fractions. For example:

2

3
+

4

5
=

22

15
4

6
+

12

15
=

132

90
,
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and 132 · 15 = 1980 = 22 · 90. Let’s prove this in general for addition.

Proof: Suppose a
b
∼ a′

b′
and c

d
∼ c′

d′
. Adding, a

b
and c

d
we get ad+bc

bd
. Similarly,

adding, a′

b′
and c′

d′
we get a′d′+b′c′

b′d′
. We now simply need to check that the two

answers are equivalent. Multiplying out we get

(ad+ bc)(b′d′) = (ab′)dd′ + bb′(cd′)

= a′bdd′ + bb′c′d since a
b
∼ a′

b′
and c

d
∼ c′

d′

= (a′d′ + b′c′)(bd).

But this implies the answers are equivalent. Q.E.D.

Aside:
Of course, when you learned to add fractions, you didn’t think in terms of
equivalence classes, but you did spend a long time getting used to the idea
that 1/3 = 2/6 = . . .. So why go through this proof at all? A common
problem for precalculus students is how to add rational functions, that
is fractions of polynomials. Addition in this case appears strange until you
see that it only mimics the rational case. What’s more, the beautiful thing
about this definition for addition is that you avoid the difficulty of finding
a least common denominator (l.c.d.). All you really need to do is follow the
routine which allows you to get away with any common denominator. This
doesn’t mean you should teach students not to find an l.c.d., but rather you
should point out that there are other ways to add fractions. Of course with
large numbers and polynomials, least common denominators do make the
computations easier which is the reason we teach them in the first place.

Now let us think a little about the proof of why this works. It turns out
that the proof really depends on two steps that are hidden by the algebra.
Thus while the algebra is rather easy to do, the actual “reason” behind doing
it is harder to find. This reason, however, is crucial to understanding the
process and making it less magical. Most students in this class understand
the reason without making it public, but as a teacher, one cannot afford to do
this, and having multiple ways of explaining ideas helps enormously. Thus,
as silly as it may seem to give two proofs of the same fact that we already
agree is correct, let us look at a second proof where we build the proposition
up one step at a time.
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Proof: First note that for any fraction e
f

and non-zero integer x, e
f

= ex
fx

.

Hence, if a
b
∼ a′

b′
and c

d
∼ c′

d′
, then

a

b
+
c

d
=

ad+ bc

bd

=
(ad+ bc)b′d′

bdb′d′

=
(ab′)dd′ + (cd′)bb′

bdb′d′

=
(a′b)dd′ + (c′d)bb′

bdb′d′

=
(a′d′)bd+ (b′c′)bd

bdb′d′

=
a′d′ + b′c′

b′d′

=
a′

b′
+
c′

d′
.

Q.E.D.

This second proof is longer and has a few more steps in it. Thus, at the
outset it looks more difficult. However, the key step is more obvious. In this
case it is the idea of cancellation of a common term in the numerator and
denominator, which then allows a simple algebraic calculation and hides the
equivalence class idea altogether.

2.1 Decimal Representations

Rather than beginning this section with a question, we begin with a project.

Program your calculator or a spreadsheet to give an arbitrary
number of digits for a fraction a

b .

That is, write a program so that given a and b, you can find as many digits
of the decimal expansion of a

b
. In trying to do this, you will want to consider

several things

• What does it mean to “bring down a zero” when doing long division?
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• What portions of the algorithm repeat themselves?

Such a program will prove useful in many different contexts. It also leads
us into the question :

What do we mean by the infinite decimal α = .2345?

When thinking about this question, think about:

• What number does each digit of the decimal correspond to?

• What rational numbers do you know that α lies between?

• What makes infinite decimals hard to understand?

Decimals are really just an extension of place-value arithmetic in base

10. Thus if the kth digit to the right of the decimal is ak, then this digit
corresponds to the value ak · 10−k. Thus the finite decimal .2345 is equal to

2

10
+

3

102
+

4

103
+

5

104
=

2345

10000
.

If we have k repetitions of this, we have

.23452345 . . . 2345 =
k∑
l=1

2345 · 10−4l,

where there are 4k digits in the decimal. Of course, if the decimal is infinite,
we will have to resort to an infinite sum leading to limits, which we are not
quite ready to do. Consequently, we shall settle for a more finite but less
enticing definition, namely that .2345 is a number α such that

k∑
l=1

2345 · 10−4l ≤ α ≤
k∑
l=1

2345 · 10−4l + 10−4k

for all integers k. Ever since we were in elementary school, we have been told
that such a number exists, however, the existence is not at all obvious.

At this point, we shall give a partial definition of an infinite decimal. This
definition will be sufficient for finding the correspondence between rational
numbers and decimals. If we desire to move beyond rational numbers in a
constructive way, however, we shall have more work to do.
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Notationally, we represent the infinite decimal α = .q1q2 . . . by writing
α =

∑∞
i=1 qi · 10−i as we did up above for .2345, where we understand that qi

is an integer such that 0 ≤ qi ≤ 9 (where i ≥ 1). We say that the rational
number α is represented by the decimal q0 +

∑∞
i=1 qi · 10−i, if and only if for

all positive integers k,

q0 +
k∑
i=1

qi · 10−i ≤ α ≤ q0 +
k∑
i=1

qi · 10−i + 10−k.

For example, let us check a well-known fraction such as 1
3
. The definition

says that .3 represents 1
3

if and only if for all positive integers k,

.33 . . . 33 ≤ 1

3
≤ .33 . . . 34,

where there are k digits on both the left hand and right hand sides. Multi-
plying both sides by 3 · 10k, this is equivalent to

10k − 1 ≤ 10k ≤ 10k + 2,

which is of course correct. Thus, at least in this example, our definition
satisfies our intuition.

So how do we discover the infinite decimal given the fraction? This brings
us back to our first question of the section. That is, we perform long division.
But what does this mean? The integer part of a

b
is the quotient in the division

algorithm for a and b, and we are left with a remainder r1. Now the first
digit to the right of the decimal is the quotient of 10 ∗ r1 divided by b which
is an integer between 0 and 9, as 0 ≤ 10 ∗ r1 < 10 ∗ b. This also gives us a
remainder r2 and we repeat the process. Thus in equations:

a = bq0 + r1

10 ∗ r1 = bq1 + r2

10 ∗ r2 = bq2 + r3

10 ∗ r3 = bq3 + r4

and inductively,

10 ∗ rn = bqn + rn+1 (2.1)
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This process gives you a decimal expansion

a

b
= q0 +

∞∑
i=1

qi · 10−i

for a
b
. We need to see that this expansion satisfies our definition. Consider

that rn = 10rn−1 − qn−1b, and in general rk = 10rk−1 − qk−1b. Plugging in
inductively, one obtains

rn = 10rn−1 − qn−1b

= 10(10rn−2 − qn−2b)− qn−1b

= 102rn−2 − 10qn−2b− qn−1b

= 103rn−3 − 102qn−3b− 10qn−2b− qn−1b

=
...

= 10n−1r1 − (10n−2q1b+ . . .+ 102qn−3b+ 10qn−2b+ qn−1b)

= 10n−1a− 10n−1(q0 +
n−1∑
i=1

qi · 10−i)b.

Recalling that the division algorithm tells us that 0 ≤ rn < b, We divide by
10n−1b to obtain the equation

0 ≤ a

b
− (q0 +

n−1∑
i=1

qi · 10−i) ≤ 1

10n−1
.

Isolating a
b

then yields

q0 +
n−1∑
i=1

qi · 10−i ≤ a

b
≤ q0 +

n−1∑
i=1

qi · 10−i +
1

10n−1

for all n, which is what we desired.
A question arises: Why did we insist on allowing for equality on the right

side when we defined the decimal expansion? This is so that .9 makes sense,
but to understand this cryptic comment we will have to wait until a later
chapter. For now, suffice it to say that we want .4 + .5 = .9 to make sense.
The understanding of the algorithm also makes clear why rational numbers
have repeating decimals. After all, there are only b choices for ri, so at some
point we get a remainder we have had before. Once this happens, however,
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it must be the case that we have repetition as you will show in a homework
exercise.

Now we have a way to produce a decimal expansion from a fraction, but
what about the other way? The traditional way of doing this in the classroom
is to take a repeating decimal,

x =
∞∑
k=0

(
n∑
i=1

qi · 10−i
)
· 10−k = .q1q2 . . . qn,

multiply by 10n, where n is called the period of the repeating decimal, and
subtract .q1q2 . . . qn from the output. Let x = .q1q2 . . . qn. Then we have:

10nx− x = q1 . . . qn =
n∑
i=1

qi · 10n−i = α,

and hence x = q1...qn
10n−1

= α
10n−1

, and we see that repeating decimals do corre-
spond to rational numbers. (Note that in the above, α = q1 . . . qn denotes the
number with digits q1 through qn.) This works, but it isn’t really clear what
we mean when we talk about multiplying and subtracting infinite decimals.
For example, try this out on .9 and see what happens. At this point you
might start to feel a little queasy about what we just did. Actually, things
are even worse as it isn’t clear that there is only one rational number equal
to a given infinite repeating decimal. Hence we need to be careful and make
this conversion process precise.

We begin by showing q1...qn
10n−1

= α
10n−1

corresponds to the infinite decimal
.q1 . . . qn. Using α exclusively now, it suffices to check for all m that

∑m−1
t=0 α10tn

10mn
≤ α

10n − 1
≤

(∑m−1
t=0 α10tn

)
10mn + 1

10mn
.

Multiply this inequality by 10mn(10n−1), to obtain the equivalent inequality:(
m−1∑
t=0

α10tn
)

(10n − 1) ≤ 10mn ≤ α

(
m−1∑
t=0

α10tn
)

(10n − 1) + 10n − 1.

Noting that
(∑m−1

t=0 α10tn
)

(10n − 1) = 10mn−1 and dividing through by α,
the above is equivalent to

10mn − 1 ≤ 10mn ≤ 10mn − 1 +
10n − 1

α
.
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Clearly the first inequality is correct, and the second inequality holds as
α ≤ 10n − 1, implying that α

10n−1
does satisfy our definition.

For uniqueness, note that given two rational numbers, a
b

and c
d
, then they

are equivalent to rational numbers with a common denominator ad
bd

and bc
bd

.
For some power of 10 we have 10n > bd. If the two rational numbers have

the same decimal expansion out to the nth decimal, however, then their
difference is less than 1

10n
. As n was chosen so that 1

bd
> 1

10n
, however, this

is only possible if ad = bc and the two rational numbers are equivalent.
Of course, our algorithm gives a unique decimal expansion, but we have

not shown that every rational number has a unique decimal expansion. A
good thing since this is false.

2.2 Irrationality Proofs

The story is that the Pythagoreans believed that all numbers were rational.
Then when one of them proved the existence of an irrational number, the
Pythagoreans made a sacrifice to the gods. At least that is one story. Another
says that the Pythagoreans threw the offending mathematician overboard.
In any case, the Greeks certainly knew that not all numbers are rational.
The easiest numbers to think about after the rational numbers are square
roots of positive numbers. We know that 12 = 1, 22 = 4, 32 = 9, and in
general we call an integer m a perfect square (or just a square) if m = a2 for
some integer a. So, what about the square root of a non-square integer? Is it
always rational? Can it ever be rational? As you probably know from your
previous classes, the answer is that the square root of a non-square rational
number is never a rational number, but why? This is the question we answer
in this section (or more correctly, you will answer in the problems to this
section).

For m a positive (non-square) integer, the meaning of
√
m is straightfor-

ward. The
√
m is a number such that

√
m ·
√
m = m. Of course, we have

been a little sneaky here. We don’t really know what a number is if it isn’t
rational, but for now we will leave the question of what we mean by real
numbers until Chapter 5. Hence the issue for now is to show that no rational
number can have its square equal to m. Once we do that, we will know that
if these numbers exist, they aren’t rational.

The proofs (and reasons) break into two main classes, algebraic proofs,
which use prime numbers and prime factorizations, and analytic proofs,
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which use arguments based on inequalities. Here we will prove that
√

2
is irrational in 3 different ways. In the homework you will be asked to do
other numbers.

We will begin with the algebraic versions:
Proof 1: This is the traditional even-odd proof. If

√
2 = m/n is rational, we

can choose integers m and n so that at least one is odd (not divisible by 2).
But then we have n

√
2 = m, and squaring both sides gives that m2 = 2n2 and

hence m is even (by Euclid’s Lemma). Writing m = 2k we have (2k)2 = 2n2,
so that n2 = 2k2 and hence n is even. But this contradicts our choice of m
and n. Hence

√
2 is not rational.

Q.E.D.

One can also prove this by using the prime factorization of 2 or alterna-
tively by using the rational root theorem on the polynomial x2 − 2. Both of
these proofs, however, rest on Euclid’s Lemma (if p is a prime number, then
p|ab implies p|a or p|b), so for our purposes, they are really just more com-
plicated versions of the same proof. Of course, when teaching high school,
you might want to use one of these other proofs.

The next two proofs are analytic in nature. By this we mean that they
have to do with inequalities, and in the case of the third proof, the idea of
limits.
Proof 2: If

√
2 is rational, there exists some smallest positive integer q such

that q
√

2 = p is an integer. Then

(p− q)
√

2 = p
√

2−
√

2q

= 2q − p

is also an integer. As 1 <
√

2 < 2, we have q < p < 2q. Hence 0 < p− q < q
and p − q is positive and smaller than q. But this contradicts the choice
of q as the smallest positive integer such that q

√
2 is an integer. Hence a

contradiction has been reached and
√

2 is not rational.
Q.E.D.

Proof 3: Suppose
√

2 = p/q with p and q integers. Note that
√

2− 1 < 1/2
since 2 < 9/4 implies

√
2 < 3/2. Hence by choosing n large, we can make

(
√

2−1)n > 0 as small as we want. However, (
√

2−1)n = A
√

2+B for some
pair of integers A and B as Z[

√
2] is a ring (see section 1.3.2), and hence is

closed under multiplication and addition. But then writing

(
√

2− 1)n = A
√

2 +B
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= A
p

q
+B

=
Ap+Bq

q
,

we have that if it is positive it must be at least 1
q
. This contradicts that

(
√

2− 1)n can get smaller than 1
q
. Hence

√
2 is not rational.

Q.E.D.

Again, one might ask why we need three proofs that
√

2 is irrational.
Each illustrates a different property of rational numbers. The first we have
already discussed, the second proof ties into the existence of least terms
for a fraction again, but this time based on inequality rather than factors,
and the third proof shows the fundamental property of the rational numbers
concerning how close you can get to zero using just two rational numbers
(1 and p

q
). This last idea turns out to be extremely useful in many number

theory proofs. Later, we shall use this idea in the proof of the irrationality
of π.

Teaching Aside: At this point, let’s think about when we might use these
other proofs in teaching high school? The answer to this question depends on
a different question. Namely, why do we teach that

√
2 is irrational? There

are several different answers to this latter question. One might argue that
students need to understand that not every number can be written exactly
as a fraction. However, this argument suggests that we need merely tell them
that and be done with it rather than give a proof that a specific number is
not rational. A better reasoning might be that understanding the proofs of
the irrationality of

√
2 helps one to better understand what the properties

of fractions and rational numbers are. Using this idea that we prove the
irrationality to teach us about properties of numbers, we can then answer
the first question as follows: The first proof could be effectively presented
when discussing the fundamental theorem of arithmetic to students on prime
decomposition, and its derivatives could be presented as applications to the
root theorem for polynomials. The second proof is a good way to intro-
duce induction proofs into the high school (something the NCTM standards
recommends), and it can help students learn how to multiply equations con-
taining roots, something which is often covered in high school texts when
discussing quadratic equations. Finally the third proof would be useful to
present in a precalculus class when discussing limits and the completeness
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properties of the real numbers.
End of Aside

What we have done here, is to show that if
√

2 is a number, then it is not
rational. Of course, we only have that it is a number because we know from
our background that it is a real number. While this statement seems obvious
to us, the existence of a number like

√
2 might not be clear. For example,

what about
√
−1. This is not a real number, so why do we get away with

saying that
√

2 is a real number? We will deal more generally with this topic
later when we talk about what the real numbers are.

2.3 Irrationality of e and π

We end this chapter by proving that e and π are both irrational. Even more
than the previous section, we are going to use our previous knowledge about
these two numbers (and calculus too) to show their irrationality. That e was
irrational was known and proved by Euler using much the same technique
as we use in Theorem ??. The irrationality of π, on the other hand, was
first proved by Lambert in 1761 by the use of continued fractions [?]. We
will take a different approach using calculus. Rather than using the more
standard calculus proof as in [7], we shall follow the approach that Niven
takes in [6]. All of these proofs are based on the same ideas as the second
and third proofs of the irrationality of

√
2 above. That is, we desire to

show that if the number were rational, some sequence must get arbitrarily
small and at the same time must be greater than some fixed positive number
establishing a contradiction. For the

√
2, we could do this without resorting

to the use of calculus. While one can use basic techniques for e (as we do in
Theorem 2.1), proving π irrational requires significantly more work, and the
calculus approach seems clearest.

Theorem 2.1 The number e is irrational.

Proof: We begin by recalling from calculus that

e =
∞∑
n=0

1

n!
.
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By way of contradiction, suppose e = a
b

with a and b positive integers. Then
(b!)e is an integer. Using the above expression for e, we have

b!e =
b∑

n=0

b!

n!
+

∞∑
n=b+1

b!

n!
.

The first term on the right is an integer since the kth term of the sum,
b(b− 1) . . . (k) is an integer. Consequently, the second sum is the difference
of two integers, and is therefore itself an integer. Moreover, it is clearly
positive, so that we have

1 ≤
∞∑

n=b+1

b!

n!
. (2.2)

At this point we analyze each term of this sum. If n ≥ b + 1 is an integer,
then

n! = n(n− 1) . . . (b+ 1)b! ≥ (b+ 1)n−b · b!.
Thus

b!

n!
≤ (b+ 1)b−n,

whenever n > b is an integer. Moreover, the inequality is strict if n > b+ 1.
Hence equation 2.2 yields

1 ≤
∞∑

n=b+1

b!

n!

<
∞∑

n=b+1

(b+ 1)b−n

=
∞∑
n=1

(b+ 1)−n.

This last is a geometric series. Again, from calculus (or some other previous
class), the sum of this series is

1

b+ 1
· 1

1− (b+ 1)−1
=

1

b
.

Putting this all together, we obtain that 1 < 1
b
, a contradiction.

Q.E.D.

The proof for π is more complicated. In order to help the reader gain
some familiarity with the type of argument we use for π, we give a second
proof that e is irrational. This proof is given in [13].
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Theorem 2.2 The number e is irrational.

Proof: We begin by establishing for non-negative integer n that there exists
non- negative integers An and Bn such that

In =
∫ 1

0
xnexdx = Ane+Bn.

If n = 0, then In = e−1, so that A1 = 1 and Bn = −1. Working inductively,
suppose that In = Ane+Bn where An and Bn are integers. Using integration
by parts,

In+1 =
∫ 1

0
xn+1exdx

=
[
xn+1ex

]1
0
− (n+ 1)In.

Thus In+1 = e − (n + 1)(Ane + Bn). Hence An+1 = (1 − (n + 1)An) and
Bn+1 = −(n+ 1)Bn, and thus An+1 and Bn+1 are integers. By induction, for
all n there exist integers An and Bn such that 0 < In = Ane+Bn.

Suppose e = a
b
. If 0 < Ae+B with A and B integers, then Ae+B ≥ 1

b
.

Consequently, In ≥ 1
b

for all n. But, we also know that

In =
∫ 1

0
xnexdx

≤
∫ 1

0
xnedx

=
e

n+ 1
.

Thus, 1
b
≤ I3b ≤ e

3b+1
< 1

b
, a contradiction. Thus e is irrational.

Q.E.D.

We shall first outline the proof that π is irrational, and then later we shall
do the details. Our goal is to find functions fn(x) so that

∫ π
0 fn(x) sin(x)dx

can be shown to be an arbitrarily small positive number. Thus our function
fn(x) will play a role similar to the function xn in the proof that e is irrational.
Assuming π = a/b is rational, the function we shall choose is

fn(x) =
xn(a− bx)n

n!
.

At this point we need several facts about this function.
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Lemma 2.3 Suppose π = a/b. For any non-negative integer k, f (k)
n (0) and

f (k)
n (π) are both integers, (where f (k)

n denotes the kth derivative of fn).

Proof: Let k be given, and note by the product rule that f (k)
n (x) is a sum of

terms of the form Am,lx
n−m(a− bx)n−l where Am,l is an integer multiple of

n(n− 1) . . . (n−m+ 1) · n(n− 1) . . . (n− l + 1)

n!

(you should check this!). Thus if a term in the sum for f (k)
n (0) is not 0, it

is an integer as in this case m = n (and l ≤ n). Similarly if a term in the
sum for f (k)

n (π) is not 0 it is an integer. Consequently, f (k)
n (0) and f (k)

n (π)
are both integers.
Q.E.D.

The next step in the proof concerns integrating
∫ π

0 fn(x) sin(x)dx. As you
may recall from calculus, to do this requires integration by parts many times.
The reader should do this for n = 1, n = 2, and n = 3 with the function
above to get a feel for what is going to happen. Once done, read on.

At this point we set

Fn(x) = fn(x)− f (2)
n (x) + f (4)

n (x) + . . .+ (−1)nf (2n)
n (x).

By the above Lemma, note that Fn(0) and Fn(π) are integers. We compute

d

dx
(F ′n(x) sin x− Fn(x) cos x) = F ′′n (x) sin x+ F (x) sin x

= f(x) sin x,

where the last follows as f (2n+1)
n (x) = 0 as fn(x) is a polynomial of degree

2n. Consequently, by the Fundamental Theorem of Calculus,∫ π

0
fn(x) sin xdx = [F ′n(x) sin x− Fn(x) cos x]

π
0 = Fn(π) + Fn(0). (2.3)

Thus by the above, this integral is an integer. At this point we state our
theorem.

Theorem 2.4 The number π is irrational.
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Proof: Suppose π = a/b with a and b positive integers. Then for x ∈ (0, π),
fn(x) sin x > 0. Consequently,

∫ π
0 fn(x) sin xdx is positive. By Lemma 2.3,

this is a positive integer. However, fn(x) ≤ anπn

n!
for x ∈ [0, π] (check this!),

so that fn(x) sin x ≤ anπn

n!
in this range. Consequently,

1 ≤
∫ π

0
fn(x) sin xdx ≤ π · a

nπn

n!

for all n. As a is a fixed positive integer, this is a contradiction. Hence π is
not a rational number.
Q.E.D.

These calculus based approaches to the irrationality of π and e will reap-
pear slightly altered when we discuss the transcendence of these numbers.
What about teaching the irrationality of π and e. The proofs for each of
these requires some knowledge of calculus, and consequently, they cannot be
easily presented to high school students in classes below the level of calculus.
This doesn’t mean that you shouldn’t teach the irrationality, rather that you
will have trouble getting students to accept the irrationality. This latter will
be particularly true for π if your text insists on using 22

7
= 3.14285 . . . for

π (one way to combat this is to point out to students that the next best
approximations for π are 333

106
= 3.141509 . . . and 355

113
= 3.1415929 . . ., and

after that you need a denominator with five digits). So as the teacher, you
have to sell the need for more mathematics. Rather than saying we don’t do
these proofs, point out that one of the reasons that calculus holds a central
place in science and mathematics is because it allows us to do these proofs
relatively easily. After all, historically, π wasn’t shown to be irrational until
after the invention of calculus.

2.4 Problems

Warm Up Problems

1. Write a program for your calculator (or on a spreadsheet) that takes
as input integers a, b 6= 0, and n > 0 and produces as output the nth
digit after the decimal of a

b
. Use this program to find the 57th digit of

1
97

. What is the period of 1
97

?
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2. Using a calculator or spread sheet, find the period of the decimal ex-
pansion of 1

n
for all integers n between 1 and 60. Explicitly find the

decimal expansion for 1/19 and 1/23.

3. For all n between 1 and 60, find the least positive integer kn such that
n divides 10kn − 1 if such an integer exists.

4. We define a rational function as a quotient of two polynomials. We then
say that p(x)

q(x)
is equivalent to r(x)

s(x)
if and only if p(x)s(x) = q(x)r(x).

Discuss the difference between equivalence and equality in this case.

5. Generalize as many of the three proofs that
√

2 is irrational as you can
to prove

√
7 is irrational.

6. Generalize as many of the three proofs that
√

2 is irrational as you can
to prove

√
21 is irrational.

7. We showed that the product of any two rational numbers is rational.
Use this to show that

√
8 is irrational.

8. Use integration by parts to calculate (in terms of f1(x), sinx, and cosx)∫ π
0 f1(x) sin xdx, where f1(x) is as in the proof that π is irrational.

9. Use integration by parts to calculate (in terms of f2(x), sinx, and cosx)∫ π
0 f2(x) sin xdx, where f2(x) is as in the proof that π is irrational.

10. Using that fn(x) ≤ anπn

n!
, show that

∫ π

0
fn(x) sin xdx ≤ π

anπn

n!
.

11. Let An and Bn be integers such that (
√

2−1)n = An+Bn

√
2. Find the

pairs (A2, B2), (A3, B3), and (A4, B4). In each case, calculate An/Bn.

12. Prove by induction for all n ∈ N , that (
√

3 − 1)n = An + Bn

√
3 for

some integers An and Bn.

Advanced Problems
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13. Compare the answers from problems 2 and 3, what do you notice? State
a conjecture and prove it. (Hint: For the proof of your conjecture,
you should think about how we moved from a fraction to its decimal
expansion.)

14. Find necessary and sufficient conditions on integers a and b 6= 0 such
that a

b
has terminating decimal expansion. Prove your answer.

15. Using the definition of equivalence of rational functions from problem 4,
prove that if q1(x), q2(x), p1(x), and p2(x) are rational functions with
q1(x) equivalent to q2(x) and p1(x) equivalent to p2(x), then q1(x)p1(x)
is equivalent to q2(x)p2(x).

16. Generalize as many of the three proofs of the irrationality of
√

2 as you
can to show that

√
28 is irrational.

17. Suppose a, b, and c are integers such that
√
a +
√
b =
√
c. Show that√

ab,
√
ac and

√
bc are all integers. Using this, show that there exists

an integer d such that
√
a = a′

√
d,
√
b = b′

√
d, and

√
c = c′

√
d with a′,

b′, and c′ all integers.

18. * Suppose a and n are integers such that a2 < n < (a+1)2. Prove that√
n is irrational.

19. There is a slightly different proof for the irrationality of π given by Ian
Stewart, which we outline here. Suppose π = a

b
with a and b positive

integers. Let

In =
∫ +1

−1
(1− x2)n cos(αx)dx.

(a) Use integration by parts to express α2In in terms of 4n, In−1, and
In−2. (Hint: you will need to show that In−1−In−2 =

∫+1
−1 (−x2)(1−

x2)n−2 cos(αx)dx.)

(b) Use induction on n to show that

α2n+1In = n!(Pn sin(α) +Qn cos(α)),

where Pn and Qn are polynomials in α of degree less than 2n+ 1
with integer coefficients.

(c) Set α = π/2. Letting Jn = a2n+1In/n!, show that Jn is an integer
and that 0 < |Jn| ≤ 2a2n+1/n!.
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(d) Use the above step to establish a contradiction, so that π must be
irrational.
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Chapter 3

Constructible Numbers

We have now worked through the definition of the rational numbers, the
definition of operations on rational numbers, and examples of numbers that
we want to exist, that cannot be rational. Let us begin to examine these
numbers. First, consider the following question:

What do we mean by
√

2 and how do we know it exists? What about
√

3?

While thinking about this question, you might want to consider a few thoughts.

• Our calculator gives us a decimal, but can it give us a way of knowing
all of the digits?

• Is there some other way to describe
√

2?

• How do we know exactly where to place
√

2 on the number line?

You probably came up with one of two usual answers to the question
of how do we know

√
2 exists. The first answer might involve looking at a

graph of f(x) = x2 and noting that f(0) is less than 2 while f(2) is greater
than 2. Since the graph is unbroken, this implies that at some value of x
between 0 and 2, we must have f(x) = 2. This argument is correct, but
to make it precise, we need the intermediate value theorem which requires
a significantly deeper understanding of what a real number is in terms of
decimals. We will get into this answer in chapter 5.

The other answer involves noting that given a square with side length
equal to one unit, the diagonal has side length equal to two units by the
Pythagorean Theorem. This works for

√
2, but what about

√
3? Once we

35
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have the
√

2, we know that
√

3 units is the length of the hypotenuse of a
right triangle having legs measuring 1 unit and

√
2 units. Continuing in

this manner, we can then get all the square roots of integers as recognizable
lengths.

One of the primary ways of thinking of numbers is that they measure
lengths. As seen above, the advantage of this view of numbers is that it
allows us to naturally consider at least some irrational numbers. Of course,
if it can’t let us view rational numbers at the same time, it wouldn’t be very
helpful. But at least the numbers 1

n
can be viewed as lengths breaking a unit

length into n equal parts, so that 1
2

can be viewed as the measure of half a
unit stick.

The philosopher/mathematician Zeno came up with several paradoxes
related to this. Suppose Achilles and a tortoise are having a race, and to
make the race fair, Achilles has given the tortoise a head start. When Achilles
reaches the point that the tortoise started at, the tortoise will have moved
just a little to some new point p1. When he reaches the point that the
tortoise is a point, however, the tortoise will have moved just a bit farther
on from where he was. When Achilles reaches the point p1, the tortoise will
no longer be there, but will be at some new point p2, and so on and so on.
Thus Achilles will never reach the tortoise.

Another of Zeno’s paradoxes is specific to motion: Suppose you shoot an
arrow at a target. Before the arrow can get to the target, it must first get
halfway. Now before the arrow can get to the target, it must first go half the
distance from where it is to the target. Once the arrow has gone 3/4 of the
distance, it must go halfway again, ad infinitum. Thus motion is impossible.

These logical paradoxes are very hard to deal with. We know that they
cannot be correct, but on the other hand, where is the flaw in the logic. One
answer is that length (or time, or whatever) is not infinitely decomposable.
Quantum physics offers up the solution that the location of a particle is not
precise so that it is meaningless to say that something is exactly halfway to
somewhere else. Others will simply point out that motion happens and will
then call it a day.

For us these paradoxes actually get at the heart of the question of what
we really mean by number and length. Of course, it is fine to define abstract
numbers as infinitely decomposable because we don’t actually ask for dis-
tances. On the other hand, if we do this, what happens to our applications
of numbers. Zeno’s paradoxes made a great impact upon Greek mathemat-
ics. While the Greeks essentially had the idea of limits, they used the process
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of exhaustion in many proofs, they also separated the concepts of magnitude
and number. Today, however, we tend to use these concepts interchangeably.
In fact, one of the strengths of mathematics, is that it often allows us to look
at similar concepts as being essentially the same. We saw this in the last
chapter when we had two different ways to look at rational numbers, as ra-
tios and repeating decimals, and we see it again here when we obtain a new
notion, that of distance measurement.

3.1 The Number Line

We begin by noting that one can make sense of rational numbers as length
in an elegant way. Suppose we have a unit length called 1. The positive
integers are then simply the lengths you can obtain by appending copies of
your unit length. This is seen naturally in the number line, where we assign
to each point on the number line its distance from 0, where if 0 is to the right
of the point, the distance is thought of as negative. With this definition, the
point at unit distance to the right of 0 is assigned the number 1, the point
two units to the right of 0 is assigned 2, and so on.

Given two lengths d1 and d2, we say that they are commensurable if there
exists a length m with which you can make lengths d1 and d2 by repeated
copies. In algebraic notation, this means there exists natural numbers n1

and n2 such that

d1 = m · n1, and

d2 = m · n2.

We can now see that if d1 and d2 are commensurable then d2 is a rational
multiple of d1 (as a number), as d2 = n2

n1
d1. Hence, we can define the positive

rational numbers as the lengths that are commensurable with our given unit
length 1. We will refer to a length with which you can make the lengths
d1 and d2 as a common yardstick. Of course, any rational length a

b
has a

common yardstick with the unit length, namely the length 1
b
.

This understanding of number as lengths also gives us a geometric picture
for both the division algorithm and the Euclidean algorithm. In particular,
when dividing the number a by b, we are just seeing how many b length
yardsticks it takes to make up an a length yardstick. As a result this gives
the quotient as the number of complete b length yardsticks we can line up
inside of an a length, and the remainder is the bit left over.
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The Euclidean algorithm then just takes the remaining yardstick to mea-
sure the b yardstick and inductively repeats this process. The beautiful thing
about the geometric interpretation is that we no longer need to have integers
to perform the Euclidean algorithm.

Let us look at an example using a = 3
4

and b = 2
7
. The Euclidean

algorithm then gives us:

3

4
=

2

7
· 2 +

5

28
2

7
=

5

28
· 1 +

3

28
5

28
=

3

28
· 1 +

2

28
3

28
=

2

28
· 1 +

1

28
.

So that 1
28

is the largest common yardstick for 3
4

and 2
7
.

While it seems natural that the largest common yardstick involves the
least common denominator, it is worthwhile to note this surprising fact,
because of how it came up. The Euclidean algorithm will naturally produce
a least common denominator, just as it produces a greatest common divisor,
precisely because the two concepts are really just different sides of the same
coin. Least common divisors are really just least common multiples of the
denominators, and it is always the case that the least common multiple of two
numbers multiplied by the greatest common divisor is precisely the product.
(Check this using the fundamental theorem of arithmetic.)

In general, if we perform the Euclidean algorithm on two yardsticks of
length d1 and d2, it will stop with a length m if and only if m is a common
yardstick for d1 and d2. As two steps of the Euclidean algorithm always
decrease the yardstick length by at least half (see homework exercise), this
tells us that if two lengths are not rational multiples of each other, then we
can use them to make as small of a length as we like. Let us collect this in
a theorem.

Theorem 3.1 Let l and k denote the lengths of two line segments. Then
there is a common yardstick for these segments if and only if there is a ra-
tional number q such that l = kq. Moreover, if l and k have no common
yardstick, then we can use copies of these segments to make as small a seg-
ment as we like. In equations, for all δ > 0 there exist integers m and n such
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that

δ > ml + nk.

As a quick example, in the above case, with l = 3
4

and k = 2
7
, we get q = 21

8
.

We have now exhausted what we can do with lengths in one dimension. Can
we improve on this using two dimensions?

3.2 Construction of Products and Sums

Let us get back to our basic question. What do we mean by
√

2? Alge-
braically, we mean a number x that satisfies the equation x2 = 2. But how
do we know such a number exists. In fact, how do we know where to put it
on the number line? Of course, we can only put it down approximately on
the number line, but in theory we can place the square root of two exactly.
All we need to do is construct an isosceles right triangle with legs of length
1 unit, and then the Pythagorean theorem tells us that the hypotenuse has
length

√
2. This leads us to the idea of constructible numbers. For our pur-

poses we shall follow the rules that the ancient Greeks followed. Given a
unit length, we say that the positive number a is constructible, if we can
construct a segment of length a using just a straightedge (a ruler with no
marks) and compass. (We will give a slightly more precise definition much
later in the chapter, but for now we shall use this definition.) These rules are
arbitrary, and other sets of rules can be developed that also lead to interesting
work. For this text, our starting assumptions will be that you know how to
copy angles, copy lengths, construct perpendiculars, and bisect lengths and
angles using a straightedge and compass. Moreover, we shall assume that
the laws of side-side-side (SSS), side-angle-side (SAS), and angle-side-angle
(ASA) congruence are all known (and have ideally been thoroughly discussed
in a previous course).

Consider the following question:

Given a unit length segment and segments of length a units and b units,
can you construct using only a straightedge and compass a segment of

length a · b units? What about a segment of length a
b

units?

While thinking about this question, consider the following

• What theorems about triangles involve products or quotients?
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• How can you construct triangles that satisfy these laws?

• How is division really defined?

If you are still having trouble coming up with a way to do this, think about
different methods for measuring the height of a flag pole. The traditional
mathematical method is to use similar triangles. Using a meter stick, you
measure the shadow of the meter stick and the shadow of the flag pole.
Then using similar triangles, you know that the height of the flag pole (in
meters) is the length of the shadow of the flag pole divided by the length
of the meter stick. What we have just done is discovered how to divide two
numbers via similar triangles. At this point, you should figure out how to
do multiplication by yourself. (This idea of performing multiplication and
division of two lengths and getting a length out, seems to have first been
done by René Descartes in his book Geometrie [12]/)

Since we just used similar triangles, let us go back and review them. Re-
call that two geometric figures are defined to be similar if their corresponding
angles are congruent and their corresponding sides are in a common ratio.
Conveniently, for triangles it suffices to check that the corresponding angles
are congruent. Since all rectangles have four right angles, and yet there are
certainly two rectangles that aren’t similar, a theorem like the Angle-Angle-
Angle (AAA) theorem for similarity is false for polygons with more sides.
Why is this theorem true?

Theorem 3.2 (AAA Theorem) Given triangles ABC and DEF , such
that the corresponding angles are congruent, then the triangles are similar.

Proof: Let triangle ABC be given, r1 be the ray with end point A through
B, and r2 be the ray with end point A through C. Let G and H be the
points on r1 and r2 respectively so that DE ≡ AG and DF ≡ AH.
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By side-angle-side theorem for congruence of triangles, triangle AGH is
congruent to triangle DEF . (We will accept the SAS theorem as true because
we have to start somewhere, and it is an easier theorem to prove.) By the
corresponding angles theorem, GH is parallel to BC. We can now assume
that AG and AH are respectively shorter than AB and AC. So that triangle
AGH is properly contained in triangle ABC. At this point, we need to draw
in some auxiliary lines and triangles. In particular, consider triangles GHB
and GHC. As they both have base GH and height d, the distance between
the parallel line segments GH and BC, the area of GHB is equal to the
area of GHC. As triangle AGC breaks into triangles AGH and GHC, and
triangle AHB breaks into triangles AGH and GHB, it follows that the area
of triangle AGC is equal to the area of triangle AHB. Considering AH as
the base of triangle AHB and AC as the base of triangle ABC, we see that
these two triangles have the same height so that the ratio of their areas is
|AH|
|AC| . Similarly, the ratio of the areas of triangle AGC and ABC is |AG||AB| . Since

triangles AGC and AHB have the same area, however, these two ratios are
equal. Thus

|AH|
|AC|

=
|AG|
|AB|

.

A similar argument completes the proof.
Q.E.D.

Aside



42 CHAPTER 3. CONSTRUCTIBLE NUMBERS

Why did we put this proof in the book. First of all, why bother with the
proof. Probably, we all remember this theorem from an earlier class. Let’s
think about the following, if you teach this theorem in a high school geometry
class. Why do you want students to learn it, why might you want them to
see a proof, and why might you need to know a proof? Most students that
take high school geometry will not remember this theorem when they are
25, so it is unlikely that most students will need to know this fact when
they finish their schooling. Of course, it is probably good for them to have
seen this, so if they do need it later, they can relearn it quicker. Maybe this
answers the first question. But then, why might you want them to see the
proof? Proofs in general are a useful way of thinking. Recall the words of
G. Polya, “But if he (the student) failed to get acquainted with geometric
proofs, he missed the best and simplest examples of true evidence and he
missed the best opportunity to acquire the idea of strict reasoning. Without
this idea, he lacks a true standard with which to compare alleged evidence
of all sorts aimed at him in modern life. (paragraph) In short, if general
education intends to bestow on the student the ideas of intuitive evidence
and logical reasoning, it must reserve a place for geometric proofs.” Polya’s
argument is that students don’t need to know all geometric facts, but they
need to be acquainted with the proof.

Another reason for looking at this particular proof, is that in discussing
it, we can illustrate two useful techniques hidden inside of the proof. The
main idea of the proof is to use area to talk about length, even though there
is no obvious area to consider at the outset. Thus the proof illustrates the
possible benefit of changing the problem at hand so that we can apply other
ideas to it. This method of problem solving is useful not only in mathematics,
but also in solving any difficult problem. The second technique is to consider
auxiliary triangles, that is we drew a line that did not appear in the original
problem. This technique is extremely helpful in solving geometric problems.

Let’s think about algebra now. The whole idea behind the use of variables
in algebra is that it allows us to solve many equations at the same time.
Hence, a common trick is to solve a problem with simple numbers, and then
change some of the numbers to variables. Here we are eliminating information
to solve many problems. However, often what one does is to assign variables
specific values, solve the specific problems, and then attempt to put the
variables back in step by step. In this case, we add in extra information that
makes the problem easier to solve.

Leaving the mathematical domain, think about what we do when giving
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directions to people. We often add in extra information to make it easier for
them to follow the directions. Of course, we call these landmarks.

None of these ideas can come out however, if you don’t discuss the proof,
either while doing it, or after you have completed the proof. Thus, when
teaching something like the AAA proof, it is worthwhile to point out what
techniques make the proof possible. In particular, after concluding a proof
like this, it will help the students immensely if you go back and help them
see what in the proof is worth looking at for review.

End of the Aside

From the AAA-theorem, we can now construct similar triangles, one hav-
ing sides of length 1 and a, and the other having corresponding sides of length
b and x. The length of x must then be a · b giving our product. It is left
to the reader to find a technique for the quotient. Of course, constructing
sums and products of constructible lengths is easy. So, what does this mean?
Before finishing, let us define a negative number x to be constructible if |x| is
constructible. Now, we can construct products, sums, differences, and divide
by non-zero numbers. Thus:

Theorem 3.3 The set of constructible numbers forms a field.

We already know that the set of constructible numbers is larger than the
set of rational numbers. Does it cover all the real numbers? In the rational
case, we discovered that there were rational numbers that didn’t have a
rational square root. Let our first goal be to show that every constructible
number has a constructible square root.

Theorem 3.4 If a is a constructible number, then so is
√
a.

Proof: We will outline the steps of the construction here and leave the
details for the reader. Since we can construct a segment of length a, we can
construct a segment of length 1 + a, which we will denote AB, letting C
be the point on this segment such that |AC| = 1 and |CB| = a. Let O be

the midpoint of the segment |AB|, which we can construct by bisecting the
segment. At this point we can construct the circle centered at O through the
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points A and B. Let ` be a line perpendicular to AB and let D be the point
of intersection of ` and the circle. By homework 11, angle 6 ADB is a right
angle. Then by homework problem 12 |DB| =

√
a.

Q.E.D.

3.3 Number Fields and Vector Spaces

Our main goal in this section is to examine whether there are any limits on
what numbers we can construct. This study has great historical significance.
The ancient Greeks asked the questions of whether you could trisect a general
angle with straightedge and compass, whether you could double the cube
with straightedge and compass, and whether you could square the circle
with straightedge and compass. Let us take these one at a time and see what
they mean.

To trisect the general angle means to give an algorithm using a straight-
edge and compass that will given the input of an angle, produce an angle
of measure one third the first angle. This problem seems least clearly asso-
ciated to what numbers we can construct, but as we shall see later, using
angle sum identities for the cosine, we can turn this question into one about
constructing lengths.

The proper statement of the doubling the cube question is: Given a
segment congruent to the side of a cube, use a straightedge and compass
to construct a segment congruent to the side of a cube of twice the volume
of the original. Thus, if the first segment has length a, and thus the cube
has volume a3, we wish to construct a segment of length b so that b3 = 2a3.
Thus, if a is chosen to be 1, b would need to be 3

√
2. Hence, the question of

doubling a cube is equivalent to the question: Given a unit segment, can we
construct a segment of length 3

√
2?

Squaring the circle is shorthand for the problem of given the radius of
a circle, can you construct a line segment so that a square having sides
congruent to your segment would have the same area as the circle. Given
a circle of radius 1, this is equivalent to constructing

√
π. As π is a more

complicated number than 2, we would expect this to be a significantly harder
problem.

While the Greeks could not solve these problems, and indeed, the last of
them was only solved in the late 19th century, that isn’t to say that they
didn’t know how to do them with other tools. Indeed, using conic sections
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and other curves, they were able to solve these problems (see [?] for references
to early proofs for example). They simply could not solve them using the
constraints of a straightedge and compass.

Tackling these problems requires a surprising amount of sophistication.
The proofs are complicated enough that they are hard to explain to non-
mathematicians. Ideally, however, prospective teachers should be able to at
least broach the subject with their students, particularly as many students
find the existence of impossibility proofs to be fascinating. So, let us begin
by reviewing necessary material.

We say that a subset of the complex numbers is a number field if it
is closed under addition, subtraction, multiplication, non-zero division, and
contains at least one non- zero element. Recall that a pair (V,+) is an
additive set if V is a non-empty set and + is a binary map from V × V to
V . Given a number field F , an additive set (V,+) and a binary operation
· : F × V → V , we say that V is a vector space over F if

1. For all u, v ∈ V , u+ v = v + u (+ is commutative);

2. For all u, v, w ∈ V , (u+ v) + w = u+ (v + w) (+ is associative);

3. The set V has a unique zero vector 0.

4. For all v ∈ V there is a unique element v′ ∈ V such that u+ v = 0.

5. For all a, b ∈ F and v ∈ V , a · (b · v) = (ab) · v;

6. For all a, b ∈ F and v ∈ V , (a+ b) · v = a · v + b · v;

7. For all a ∈ F and u, v ∈ V , a · (u+ v) = a · u+ a · v;

8. For all v ∈ V , 1 · v = v.

There are several other basic properties that we want. From this set of
axioms, however, we can prove these conditions. For example, 0 · v = 0 for
all v ∈ V . To see this, note that 0 · v = (0 + 0) · v = 0 · v + 0 · v by number
6 above. Letting v′ be the additive inverse of v, by adding v′ to both sides,
we obtain that 0 = 0 · v + 0 = 0 · v. Similarly, we can deduce that a · 0 = 0
for all a ∈ F and (−1) · v = v′, that is that −1 · v is the additive inverse of
v. Consequently, we actually use −v rather than v′ in general.

For our purposes, we will often write 0 for the zero-vector unless it will
lead to confusion.
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Now suppose we are given two number fields E and F with F ⊆ E.
Our main tool will be to turn E into a vector space over F . How do we
do this? Consider what we really need to make E a vector space over F ,
an addition operation on E and a “multiplication” operation for elements of
F with elements of E. We already have these, namely the field addition of
E will be our addition, and the field multiplication of E certainly works as
multiplication of an element of F with an element of E.

Theorem 3.5 If F and E are number fields with F ⊆ E, then E is a vector
space over F .

Mathematicians refer to what we are doing as applying a “forgetful” op-
eration. Namely, we are forgetting some of the information given to us. As
one mathematician said, “Mathematics is the art of forgetting the right in-
formation at the right time.” Why do we want to forget the information?
Because vector spaces are a tool that mathematicians know a lot about. In
particular, we have many tools with which to study vector spaces, as we shall
see.

If E is a vector space over F , a set of vectors {v1, . . . , vn} ⊂ E is linear
independent over F if

n∑
i=1

aivi = 0

implies ai = 0 for all i. If a set is not linearly independent, we say that it is
linearly dependent.

We say that a set {v1, . . . , vn} ⊂ E spans E over F if the set

{
n∑
i=1

aivi | ai ∈ F} = E.

The set B = {v1, . . . , vn} is then a basis for E over F if B is a linearly
independent spanning set. One can extend these definitions to allow for
infinite bases and infinite spanning sets, although we will not do that here.
An important theorem of linear algebra then states

Theorem 3.6 If V is a vector space over F , then there exists a basis for V
over F . Moreover, every such basis has the same cardinality.

We define the dimension of E over F to be the cardinality of any basis for
E over F , feeling comfortable that this is well defined by the above theorem.
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Other ways of defining the dimension that you may have learned in linear
algebra (at least in finite cases) is that the dimension is the size of a maximally
linearly independent set over F , or a minimal spanning set. The dimension
of a vector space is one of the important invariants we shall analyze.

At this point, let us consider an example. We will take the rationals Q
for our ground field, and let

E = Q[
√

2] = {a+ b
√

2 | a, b ∈ Q}.

To see that E is actually a field, we need to check that it is closed under
addition, subtraction, multiplication, and non-zero division. Except for di-
vision these are all straightforward. For division, however, we just use the
process of rationalizing the denominator (this being one of the few times a
college professor will have you rationalize a denominator). That is,

(a+ b
√

2)/(c+ d
√

2) =
ac− 2bd

c2 − 2d2
+
bc− ad
c2 − 2d2

√
2.

To be sure that this is actually an element of our field E, we need to know
that c2 − 2d2 6= 0, but if it did, then we would have

√
2 = c/d, a rational

number, contradicting the irrationality of
√

2. Thus E is a field. What is a
basis for E over Q. The obvious basis is the pair {1,

√
2}. There are other

bases, though. For example {1 +
√

2, 1−
√

2} and {2 + 7
√

2, 3 +
√

2} are also
bases for E over Q. In this case, we have that E is 2-dimensional over Q.

When F ⊆ E are number fields, we say that E is a field extension of F ,
and we define the degree of E over F to be the dimension of E as a vector
space over F . We write these as

[E : F ] = dimF (E).

Let’s do a couple more examples. This time, let

E = Q[
3
√

2] := {a+ b
3
√

2 + c
3
√

4 | a, b, c ∈ Q}.

Again, it is fairly easy to check addition, subtraction, and multiplication.
This time, it is a lot more complicated to check on how to divide. In par-
ticular, what is 1/(3 + 3

√
2− 5 3

√
4)? In high school, you were never asked to

rationalize this denominator, yet you can. (Actually, there was one rather
annoying boy in my algebra II class who asked how to rationalize this de-
nominator.) The annoying answer is that you just multiply top and bottom
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by 19 + 47 3
√

2 + 16 3
√

4, and if we do this, we get −381 so that

1

3 + 3
√

2− 5 3
√

4
=
−19

381
+
−47

381
3
√

2 +
−16

381
3
√

4.

That was of course “magic”, and the first time most high school students
see it, rationalizing quadratic denominators also seem like magic. (As a
brief aside, rationalizing denominators is one of the things that is thankfully
leaving the curriculum. It is rarely used and is generally taught as a pure
algorithm. The reason why we might have wanted it on the other hand is
that it gives students practice on understanding the value of knowing the
difference of squares factorization.)

So how did we come up with this magic number above? There are two
typical ways to do it. The first you probably learned and promptly forgot in
abstract algebra. It involved factor rings of Q[x] by the ideal (x3 − 2). The
second way involves matrix theory. We will do both.

Method 1 (The Euclidean Algorithm for Polynomials): In abstract al-
gebra, you learned that if p(x) is an irreducible polynomial in Q[x] and (p(x))
denotes the ideal of all multiples of p(x), then the factor ring Q[x]/(p(x)) is
isomorphic to Q[a] where a is a root of p(x) (and Q[a] denotes the smallest
ring containing the rational numbers and a). The idea is that we define poly-
nomials f(x) and g(x) to be equivalent if p(x)|(f(x)−g(x)) (just like we define
modular arithmetic). In particular, every polynomial f(x) is equivalent to its
remainder rf (x) upon division by p(x). Thus any polynomial is equivalent to
a polynomial of the for a0 + a1x + . . . + an−1x

n−1, where deg(p(x)) = n.
The main theorem you then proved was that if f(x) ≡ g(x)mod p and
h(x) ≡ k(x)mod p, then f(x) +h(x) ≡ g(x) + k(x) and f(x)h(x) ≡ g(x)k(x)
modulo p(x) (again, just like in modular arithmetic). Thus Q[x]/(p(x)) is a
well-defined commutative ring.

The question that arises is when is this a field. Well, since p(x) is
irreducible, if f(x) ∈ Q(x) is not equivalent to the 0 polynomial, then
p(x) 6 |f(x), so the greatest common divisor of p(x) and f(x) is 1. Finally,
you had a theorem which said that if d(x) was the greatest common divi-
sor of p(x) and f(x), then there existed polynomial r(x) and s(x) such that
p(x)r(x) + f(x)s(x) = d(x), and hence in this case, f(x)s(x) ≡ 1 modulo
p(x), so that s(x) is the “inverse” of f(x). We use the quotation here be-
cause, neither f(x) nor s(x) is actually an element of Q[x]/(p(x)), but rather
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they represent equivalence classes of elements (just like fractions represent
equivalence classes of elements of the rationals).

To find s(x), you then enact the Euclidean Algorithm as we are about to
do. The difficulty here is that the denominators become truly terrible. In
our case above, p(x) = x3− 2, and the correspondence is that a+ b 3

√
2 + c 3
√

4
corresponds to the polynomial a + bx + cx2, since x is a root of p(x) in
Q[x]/(p(x)). Thus, our case has f(x) = 3 + x − 5x2. Since this case will
give very ugly fractions, let us see how everything should work with an easier
element. For example, suppose we want to invert 3 + 3

√
2. This corresponds

to the function g1(x) = x+ 3, and the division algorithm gives:

x3 − 2 = (x2 − 3x+ 9)(x+ 3)− 29

Thus 29 = −(x3 − 2) + (x + 3)(x2 − 3x + 9), so that 1 = − 1
29

(x3 − 2) +

(x + 3)( 1
29
x2 − 3

29
x + 9

29
), giving (3 + 3

√
2)−1 as 9

29
− 3

29
3
√

2 + 1
29

3
√

4. It turns
out that despite all appearances, this is a much simpler case than what we
started with. Using g(x) = −5x2 + x+ 3 now, the first step of the Euclidean
algorithm yields

x3 − 2 = (
−1

5
x− 1

25
)(−5x2 + x+ 3) + (

16

25
x+
−47

25
).

Of course, the fractions get worse in the next step, at which point we get

−5x2 + x+ 3 = (
16

25
x+
−47

25
) ∗ (
−125

16
x− 5475

256
)− 9525

256
.

Of course, now we plug back in to find out what s(x) and t(x) should be so
that we get the desired inverse. Clearly this is a job that should be done by
a computer, not a human, and resorting to such, we have modulo x3−2 that

(−5x2 + x+ 3) = ((
−125

16
x− 5475

256
)(

1

5
x+

1

25
)− 1) ∗ 256

25 · 381
.

When the dust settles, this last is equal to

− 16

381
x2 − 47

381
x− 19

381
.

Method 2 (Matrices): Fortunately, there is a way that let’s us use our TI-
83 calculators, and lets us bypass a lot of the messy calculations. To do this
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we us, another way of expressing this field Q[
√

2] that uses linear algebra.
Recall for a vector space V over a field F , a map f : V → V is lF -inear if

f(au+ bv) = af(u) + bf(v)

for all a, b ∈ F and u, v ∈ V . It is easy to check (do so!) that if E and F are
number fields with F ⊆ E and α ∈ E, then multiplication by α (applying φα)
is an F - linear map of the vectors space E over F . Namely, for all a, b ∈ F
and u, v ∈ E, the map φα(x) = α(x) has the property that

φα(au+ bv) = α(au+ bv) = a(αu) + b(αv).

Given an F -basis for E, any F -linear map uniquely corresponds to a matrix.
If follows that if we choose a basis, φα can be represented by a unique matrix
over F .

Let’s do another example. Suppose F is the set of real numbers, and
that E is the set of complex numbers. An R-basis for C is {1, i}. Let the
α = 3− i. At this point take a few minutes and try and work out for yourself
what the corresponding matrix for α is.

There are two possible answers, depending on whether you like your ma-
trices to multiply on the left or the right. The traditional way is to write the
function on the left, so let us do that. Again, let us return to linear algebra.
Given a basis {v1, . . . , vn}, and a linear map f , the corresponding matrix
for f is (aj,k), where f(vj) =

∑n
k=1 aj,kvk. In the case above, v1 = 1, v2 = i,

f(v1) = f(1) = 3+(−1)i, and f(v2) = f(i) = 1+3i. Thus a1,1 = 3, a2,1 = −1,

a1,2 = 1, and a2,2 = 3. Thus the corresponding matrix is

(
3 1
−1 3

)
. You

should check that the corresponding matrix for the complex number a+ bi is(
a −b
b a

)
. Probably in your abstract algebra course, you proved that the

complex numbers were isomorphic to the set of real two by two matrices of
the above form. This linear algebra reason is why this happens.

So how does this help us with our problem of finding an inverse? In our
case, E = Q[ 3

√
2] had a natural basis (we could choose another, but it would

just make matters more confusing) of {1, 3
√

2, 3
√

4}, and given an element
a+ b 3

√
2 + c 3

√
4, the corresponding matrix is a 2c 2b

b a 2c
c b a

 .
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Thus, the element at hand has corresponding matrix 3 −10 2
1 3 −10
−5 1 3

 .
But the multiplying by the inverse should correspond to the inverse matrix.
Thus we can ask our graphing calculator to find the inverse matrix. Now,
when it does so, the only problem is that the matrix has decimal entries, but
we really wanted fractional entries. The abstract algebra tells us that we can
find the decimals as fractions, so it is just a question of how. At this point,
we pull a rabbit out of our hat. Well, not really, rather we use one more
often unproven fact about linear algebra. The key is that when one finds the
inverse by expansion by minors, it turns out that the common denominator
is the determinant of the matrix we started with. Thus, if A is the matrix
above, we have that det(A)A−1 is a matrix with integer entries. In fact, our
calculator tells us it is:  19 32 94

47 19 32
16 47 19

 .
As the determinant of A is −381, we get our answer from the first column of
A−1, the matrix

1

381

 −19 −32 −94
−47 −19 −32
−16 −47 −19

 .
An interesting thing to point out at this time is how linear algebra and

linear transformations do so much more for us than expected. In partic-
ular, here they have actually told us how to work with fairly complicated
expressions of numbers as combinations of roots.

All of this was to help us see why every element of Q[ 3
√

2] has an inverse.
The first method answered the question of why, by telling us that since x3−2
was irreducible and 3

√
2 was a root of x3 − 2, that forced every element to

have an inverse. The second portion told us how to find that inverse using
the tools we have. We also have a handle on what the dimension of the space
Q[α] should be now. It should be the degree of an irreducible polynomial
which α is a root of. Thus, Q[ 3

√
2] is a field extension of degree 3 over Q.

Let us summarize this point in a theorem. First we need to make precise
the notation we have been using. If α ∈ C (where C is the set of complex
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numbers) and K is subfield of C (note, just think that K = Q for now), then
by K[α] we mean the smallest subring of C containing K and α. Here we
have

K[α] = {
k∑
I=0

aiα
I | ai ∈ K and k ∈ Z}

By K(α), we mean the smallest subfield of C containing K and α.

Theorem 3.7 If f(x) is an irreducible polynomial with coefficients in a num-
ber field K, and α is a root of f(x) in C, then K(α) = K[α], and the degree
of the field extension K[α] over K is the degree of f(x).

Proof: From abstract algebra, we haveK[x]/(f(x)) ∼= K[α]. But every poly-
nomial of K[x] is equivalent modulo f(x) to a polynomial of degree less than
n by the division algorithm. Thus {1 + (f(x)), x+ (f(x)), . . . , xn−1 + (f(x))}
spans K[x]/(f(x)) over K. Any non-zero polynomial g(x) =

∑n−1
i=0 aix

i is
not divisible by f(x), so that g(x) + (f(x)) 6= 0 + (f(x)). Consequently,
{1 + (f(x)), . . . , xn−1 + (f(x))} is linearly independent, and the dimension of
K[x]/(f(x)) over K is n.
Q.E.D.

We are now ready to state our “big” theorem for this section. The di-
mensions multiply theorem.

Theorem 3.8 If F and E are number fields with Q ⊆ F ⊆ E, then

dimQ(E) = dimQ(F ) · dimF (E).

Proof: Let {α1, . . . , αn} be a basis for F over Q, and let {β1, . . . , βm} be a
basis for E over F . We will show that

B = {αiβj | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}

is a basis for E over Q. We begin by showing that B is a linearly independent
set. Suppose ∑

i,j

aijαiβj = 0,
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where the aij’s are all rational numbers. Rearranging the terms in the sum-
mation, we have that

0 =
n∑
i=1

m∑
j=1

aijαiβj (3.1)

=
m∑
j=1

(
n∑
i=1

aijαi

)
βj. (3.2)

Now, the set of βj is linearly independent over F , and since
∑n
i=1 aijαi is an

element of F as the αi’s are all in F , we have by the definition of linearly
independence that

n∑
i=1

aijαi = 0

for all j. Since the set of αi’s is linearly independent over the rationals, and
the aij’s are all rational, we then have that aij = 0 for all i and j. Hence the
set B is linearly independent over Q.

We now must check that B is a spanning set for E over Q. Let x be
an arbitrary element of E. Since the set of βj’s span E over F , there exist
elements bj ∈ F such that x =

∑m
j=1 bjβj. Since the bj’s are in F and the

αi’s span F over Q, there exist aij ∈ Q such that bj =
∑n
i=1 aijαi for all j.

Unraveling the above equations, we have that

x =
m∑
j=1

bjβj (3.3)

=
m∑
j=1

(
n∑
i=1

aijαi

)
βj (3.4)

=
∑
i,j

aijαiβj. (3.5)

Since x was an arbitrary element of E, we have that B spans E over Q. As
we have shown that B is a linearly independent spanning set for E over Q,
we have shown that B is a basis for E over Q. Since |B| = nm, we have
shown that dimQ(E) = dimQ(F ) · dimF (E).
Q.E.D.

In fact, this theorem is more general than stated. We didn’t really need
for the smallest field to be the rational numbers. It could have been any
subfield of F .
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Teaching Aside

At this point, you are probably wondering how any of this really ties into the
high school curriculum. In a basic way, the division algorithm for polynomials
and elementary matrix theory are in the curriculum so that these points show
a natural extension. On the other hand, we claim that there is more to it
than that.

In particular, one of the great question that many students ask when you
do long division of polynomials, is why should we do this? If you take a util-
ity standpoint, the answer lies in the division algorithm and the Euclidean
algorithm (our first technique for inverting polynomials). Most of the error-
correcting coding systems, use polynomial arithmetic extensively. In truth,
this arithmetic is usually done over a finite field rather than Q, but these sys-
tems require the division algorithm and the Euclidean algorithm. Similarly,
most secret coding systems use the Euclidean algorithm for integers.

What about problem solving? Let’s think about how we solved the prob-
lem of finding an inverse of 3 + 3

√
2 − 5 3

√
4. In both cases, we turned the

problem into a completely different problem that used ideas that we already
knew. This is an important problem solving strategy that needs to be taught.
Moreover, matrices and linear algebra are one of the strongest tools to use
in this way. That is, the applications of matrices are wide ranging and help
us solve many different problems.

The last issue that we would like to raise here is that the idea of multiple
representations is an important strand running through the NCTM stan-
dards. What we have seen here is that there are three very different ways to
think about something as simple as the 3

√
2, each with its own strengths and

weaknesses. Certainly, in a high school classroom, one can remember these
different representations and answer the sort of questions that might require
using one of them.
End of Aside

3.4 Impossibility Theorems

The impossibility theorems for the constructibility of 3
√

2 and trisecting the
general angle are very similar. The key to both is theorem 3.8 from the
previous section. We shall show that any time you construct a new point
on the plane using straightedge and compass, the numerical values for the
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coordinates of this new point only involve the numerical values for the coor-
dinates of points already known and the square roots of such values. In the
language above, the coordinates lie in a field of dimension 2 over the small-
est field containing all previously constructed coordinates. Consequently, by
Theorem 3.8, every field extension Eobtained via straightedge and compass
construction has dimension 2n over Q. But suppose 3

√
2 was constructible,

then Q[ 3
√

2] would be a subfield of one of these fields E. But then Theo-
rem 3.8 would imply that 3|2n, a contradiction. Thus we cannot construct
3
√

2. For the trisection, we do something similar. Namely, we show that if
you can construct a 20 degree angle, then you would be able to construct
a root of an irreducible cubic polynomial with rational coefficients. Again,
this would imply that one of our fields E of dimension 2n would contain a
subfield of dimension 3 over Q, a contradiction.

Now that we have outlined our attack, let’s fill in the gaps a little better.
The first thing we need to do is to answer the following three questions:

1. Suppose you have four points A = (x1, y1), B = (x2, y2), C = (x3, y3),
and D = (x4, y4), with all coordinates lying in a field E, and AB and
CD intersect. What are the coordinates of the intersection point?

2. Suppose you have the same four points, and the line AB intersects the
circle with center C through point D. What are the coordinates of the
intersection point?

3. Now suppose the circle with center at A through B intersects the circle
with center at C throughD, what are the coordinates of the intersection
point?

In all cases, you should have found out that the coordinates involve at most
the square root of some number from the field E. (This is in-class group
work and homework.)

Let us summarize what you just showed in a lemma.

Lemma 3.9 Let E be a subfield of the real numbers, and suppose

x1, x2, x3, x4, y1, y2, y3, y4 ∈ E.

If (x, y) is a point

1. at the intersection of the line joining (x1, y1) and (x2, y2) and the line
joining (x3, y3) and (x4, y4), then x, y ∈ E.
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2. at the intersection of the line joining (x1, y1) and (x2, y2) and the circle
with center (x3, y3) and through (x4, y4), then there exists an element
d ∈ E such that x, y ∈ E[

√
d].

3. at the intersection of the circle centered at (x1, y1) through (x2, y2) and
the circle centered at (x3, y3) through (x4, y4), then there exists d ∈ E
such that x, y ∈ E[

√
d].

At this point let us finish the proof of the impossibility theorems. To
begin with, we now need to be precise about our terminology. We follow
Stewart [13]. Assume that P0 is a set of points in the Euclidean plane R2,
and consider operations of two kinds:

1. through any two points draw a straight line, and

2. Draw a circle centered at one point and through any other point.

A point (x, y) ∈ R2 is said to be constructible from P0, if there exist a
sequence of points

(x1, y1), (x2, y2), . . . , (xt, yt) = (x, y)

such that the point (xi, yi) can be obtained as the intersection point of two
distinct lines or a line and a circle or two distinct circles when drawn using
one of our two operations from the points P0∪{(x1, y1), . . . , (xi−1, yi−1)}. We
say that (x, y) is constructible over the rationals if (x, y) is constructible over
the set P = {(a, b) | a, b ∈ Q}.

We will prove our result in a series of lemmas.

Lemma 3.10 Suppose (x, y) is constructible over the rationals via the se-
quence (x1, y1), (x2, y2), . . . , (xt, yt) = (x, y). Define Ki = Q[x1, y1, . . . , xi, yi]
to be the smallest field containing Q and the numbers x1, y1, x2, . . . , yi. Then
Ki = Ki−1[

√
a] for some a ∈ Ki−1.

Proof: This follows from Lemma 3.9.
Q.E.D.

Lemma 3.11 Using the notation of the proceeding Lemma, we have dimKi−1
Ki

is 1 or 2.
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Proof: By the preceding lemma, Ki = Ki−1[
√

(a)] for some a ∈ Ki−1. Thus,

x2 − a is either an irreducible polynomial over Ki−1 or
√
a ∈ Ki−1. By

Theorem 3.7, we have dimKi−1
Ki is either 1 or 2.

Q.E.D.

We now define a real number α to be constructible if (α, 0) is constructible
over Q.

Theorem 3.12 Suppose x is a constructible number. Then [Q(x) : Q] is a
power of 2.

Proof: As x is constructible, there exists a sequence of points

(x1, y1), (x2, y2), . . . , (xt, yt) = (x, 0)

as in the definition of a constructible point (x, 0). Let Ki be defined as before.
Then x ∈ Kt. We now prove by induction on i that Ki has dimension a power
of 2 over Q. Since K0 = Q, it has dimension 1 = 20 over Q establishing the
basis step. Suppose i > 0 and that Ki−1 has dimension 2l over Q for some l.
By Lemma 3.11, we have dimKi−1

Ki is 1 or 2. Consequently, by the degrees
multiply theorem, it follows that dimQ(Ki) is equal to 2l times one or two,
and hence is again a power of two. By induction, dimQ(Kt) = 2l for some l.

As x ∈ Kt, it follows that Q(x) is a subfield of Kt. The degrees multiply
theorem then implies that dimQ(Kt) = dimQ(Q(x)) · dimQ(x)(Kt). Thus
dimQ(Q(x)) divides dimQ(Kt) = 2l. Thus dimQ(Q(x)) = [Q(x) : Q] must
also be a power of 2.
Q.E.D.

Theorem 3.13 The 3
√

2 is not constructible.

Proof: We have already seen that [Q( 3
√

2) : Q] = 3. Thus Theorem 3.12
implies 3

√
2 is not constructible.

Q.E.D.

Question: Can you find an irreducible polynomial satisfied by cos(20◦)?
Think about how one can use the angle sum formulas and the knowledge
that cos(60◦) = .5 to find an equation that cos(20) is a root of. (In class
homework assignment).
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Based on your answer to the last problem, you should have discovered that
cos(20) is the root of an irreducible cubic polynomial with integer coefficients.
This implies by our previous arguments that cos(20) cannot be constructed.

Theorem 3.14 There does not exist an algorithm which can trisect a 60◦

angle with straightedge and compass.

Proof: Suppose there did exist such an algorithm. As an equilateral triangle
can be constructed, we can construct a 60◦ angle. Consequently, we could
construct a 20◦ angle. From this it follows that we can construct a line
making a 20◦ angle with the x-axis of length 1 from the origin. Thus, as
in the picture below, by dropping a perpendicular, we can construct the

point (cos(20), 0), implying that cos(20) is constructible. Having achieved a
contradiction, we see that we cannot trisect a 60◦ angle.
Q.E.D.

3.5 Regular n-gons

One of the great feats of Gauss was to discover with proof, which of the
regular n-gons can be constructed with straightedge and compass. Unfortu-
nately, the proof of Gauss’s result goes beyond the scope of this book, but
let us,but let us at least state the result.

Theorem 3.15 A regular n-gon can be constructed with straightedge and
compass if and only if n = 2k1p1p2 . . . pt, where k1 is a non-negative integer,
and the pis are distinct Fermat primes.

A Fermat prime is a prime number of the form 22s + 1, so that 3, 5, 17, 257,
and 65537 are the first four Fermat primes. Thus, a regular 17-gon can be
constructed, but a regular 9-gon cannot. Briefly, the proof of this theorem
seems to require Galois theory or mathematics at roughly the same level,
and the interested reader is encouraged to look at [13].

It turns out that we have already handled the question of the regular 9-
gon since constructing such a figure would require constructing a 40◦ exterior
angle which could then be bisected to produce a 20◦ angle, a contradiction.
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However, while we cannot prove Gauss’s theorem (and the 17-gon is ex-
tremely complicated to construct), it does make sense to stop here and work
on constructing a regular pentagon.

So, how can you do such a thing? We now have a great deal of information
about constructing numbers. We know how to construct sums and products,
and earlier we found out how to construct

√
a given a, so we shall use these

ideas to construct our pentagon. To do so, work through the following set of
questions.

C1. What is the exterior angle of a regular 5-gon. That is, what angle do
you need to construct to construct the 5-gon.

C2. Consider the following figure
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x

What is the measure of x? Show this. How can you use this to construct
the needed angle.

C3. Construct a segment of length x.

C4. Construct an isosceles triangle ACD with two sides (AC and AD) of
length x and one side CD of length 1. Construct points B and E at
distance 1 from A and respectively of distance 1 from C and D.

C5. Argue that ABCDE is a regular pentagon.
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3.6 Problems

Warm up problems

1. Give an example of two pentagons which have corresponding angles
congruent but are not similar.

2. Suppose V is a vector space over the field F . Prove for all a ∈ F that
a · 0 = 0.

3. Construct a regular pentagon with straightedge and compass. Justify
the steps along the way.

4. Given segments of length a and b and unit length 1, show how to
construct ab and a

b
. Prove that these constructions give the appropriate

numbers.

5. In the text we have given one way to construct the square root of a
given integer x by using a right triangle. Give a second proof by using
mathematical induction on x ≥ 2 and the Pythagorean Theorem.

6. Without actually doing the construction, show that√
2 +

4
√

3 +
√

2

is constructible.

7. Show that 3
√

25 cannot be written as a+ b 3
√

5 for any rational numbers
a and b.

8. The complex numbers C can be viewed as a two-dimensional vector
space over the real numbers. The standard basis for C is the set {1, i},
and the representation of the complex number a+ bi as a 2× 2 matrix
using this basis is (

a b
−b a

)
.

Find the determinant of this matrix. The square root of this determi-
nant is the norm of the complex number a + bi. What is the matrix
associated to the element a + bi using the basis {1 + i, 1 − i}? What
relationship does this determinant have with the norm of the complex
number? Explain.
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9. Is 5
√

45 constructible.

10. Given a triangle provide the constructions for inscribing a circle within
the triangle and circumscribing a circle about the triangle.

Advanced Problems

11. In the next problem, we show how to construct
√
a given a unit length

and a length a. To do this we will use the theorem from Euclidean
geometry which states: if an angle A is inscribed in a circle, then the
arc cut off by A has measurement 2|A| where |A| denotes the radian
measure of A. Prove this.

12. Given the following picture, prove that |DB| =
√
|CB|, given that the

circle centered at O through A, also runs through C and D.
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13. Without actually doing the construction show that(
4
√

3 +
√

7 +
√

5
)(

8
√√

3 +
√

5 + 2
)

is constructible.

14. Suppose a line defined by two points with coordinates in a field F is
intersected with a circle having center with coordinates in F and radius
in F . Prove that the points of intersection have coordinates in a field
F ′ which is two dimensional over F .

15. Prove without working too hard that Q[
√

2, 3
√

2] is a field of dimension
6 over the rational numbers.
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16. Find the multiplicative inverse of the number x = 1 + 2 3
√

3 + 2 3
√

9, and
prove that your answer is correct.
Hint: To do this, you simply need to come up with a candidate for the
inverse and multiply the two numbers together and see that you get 1.
To find a candidate you should follow the steps given:

(a) Using the basis {1, 3
√

3, 3
√

9} for the field Q[ 3
√

3] over the field Q,
write the 3 × 3 matrix M corresponding x viewed as a linear
transformation from Q3 to Q3.

(b) Use Gaussian elimination to find the inverse of the matrix M .

(c) Find the element y of Q[ 3
√

3] corresponding to M . Now multiply
x and y to check that xy = 1.

17. If we take the basis of {1,
√

3,
√

5,
√

15} for the field Q[
√

3,
√

5] over Q,
then what is the matrix associated to the element 2 +

√
3−
√

15 of this
ring? What is the inverse of this element?

18. Let n be an integer. Find necessary and sufficient conditions that an
angle of n degrees can be constructed with straightedge and compass.
(Hint, show that a 3◦ angle can be constructed and that a 2◦ angle
cannot be constructed with straightedge and compass.)



Chapter 4

Solving Equations by Radicals

In the last chapter we proved that 3
√

2 is not a constructible number. Obvi-
ously, we might do somewhat better if we used different tools of construction.
In fact, the ancient Greeks knew how to trisect the general angle if they were
allowed to use extra tools. Similarly, they could construct cube roots using
other tools. Today, one of the methods used to do constructive type geome-
try in the schools is by allowing the construction tools that you have when
paper folding. It has been shown that using paper folding, it is possible to
construct 3

√
2. Nevertheless, for each of these expanded definitions of con-

struction tools, a proof similar to the one given in the last chapter will show
that there exists some numbers that cannot be constructed. In fact, in all of
these cases, the proof shows that there is some nth root of 2 that cannot be
constructed.

On the other hand, we have an algebraic definition for the number n
√

2.
Thus, we can ask, can we get all real numbers via combinations of radicals.
By this, we mean is it the case that any real number can be written using just
the operations of addition, subtraction, multiplication, division, and taking
an nth root, together with the rational numbers? It is certainly true that we
can get a lot of numbers this way that we couldn’t get via constructions. For
example,

7

√
2

3
− 9
√

5 +
3
√

2

is one such number. Can this be everything? As a simpler question, we
might ask simply, can we solve every algebraic equation that has real roots
this way? (We could even go so far as to ask the question for complex

63
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roots since after all, i =
√
−1). While on the face of it, this question might

look straightforward, many great mathematicians had difficulty with this
question. For example, Euler wrote at least one article in which he suggested
that this should be the case, but there was a mistake found in his work.

Since we know that every linear equation with rational coefficients can
be solved over the rational numbers, the first interesting case for us will be
the quadratic equation. You should start by working through the following
problem:
Derive the quadratic formula.

Chances are that your derivation looks something like the following:

Derivation of the Quadratic Formula: Suppose ax2 + bx+ c = 0 where
a, b, and c are real numbers with a 6= 0. Subtracting c from both sides, this
is equivalent to

ax2 + bx = −c.
Dividing both sides of the equation by a, our original equation is then equiv-
alent to

x2 +
b

a
x =
−c
a
.

At this point, we add ( b
2a

)2 to both sides so that the left hand side of the
equation is a perfect square. Thus x solves our original equation if and only
if x solves

x2 +
b

a
x+ (

b

2a
)2 =

−c
a

+ (
b

2a
)2.

The right hand side of this equation is then (x+ b
2a

)2, so that

x+
b

2a
= ±

√
−c
a

+ (
b

2a
)2.

Thus x is a root of our original equation if and only if

x =
−b
2a
±
√
−c
a

+ (
b

2a
)2

=
−b
2a
±

√√√√−4ac

(2a)2
+

b2

(2a)2

=
−b
2a
± 1

2a

√
−4ac+ b2

=
−b±

√
b2 − 4ac

2a
.
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The above derivation is relatively easy to do if you are good at al-
gebra. Of course, if you aren’t, it is extremely hard to recreate and looks
pretty much like random symbols. Also, while the notion of “completing the
square” is algebraically clear when you add in the b2

4a2 term, the idea doesn’t
stick for most students. One can also derive the quadratic formula geometri-
cally, but for this, let us consider the special case where the equation we are
trying to solve is x2 + dx = e, where d and e are non-negative. Then we can
geometrically represent x2 + dx as the area of the rectangle below:

x

x

d
2

d
2

Thus in the picture, to complete the square, you need to add a little
square of side length d

2
. Thus, if the equation were read as x2 + dx = e with

d and e positive, the thinking would be that you would need to add a little
piece of area (d

2
)2 to get a square of area e + (d

2
)2. Thus, the side length of

the square must be
√
e+ (d

2
)2. Moving the d over to the other side, we then

get that x = −d
2

+
√
e+ (d

2
)2. Of course, this isn’t the usual statement of

the quadratic formula. However, as a first introduction to the formula, this
can be very helpful, as it grounds the formula in a geometric notion that
many students feel more comfortable with and can recreate at a later point.
Moreover, while we have assumed that d and e are positive, the algebraic
justification turns out to be equally good, even if they are negative, so that
this derivation can give students a way to recreate the formula.

To turn this into the usual version of the quadratic formula is just a matter
of substitution. That is, suppose we are to solve the equation ax2 +bx+c = 0
where a 6= 0. Dividing through by a and subtracting c

a
from each side we

obtain the equivalent equation

x2 +
b

a
=
−c
a
.

Thus, the equation is the same as earlier with d = b
a

and e = −c
a

. Conse-
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quently, our earlier solution tells us that

x = −d
2
±
√
e+ (

d

2
)2

= − b

2a
±
√
−c
a

+ (
b

2a
)2

= − b

2a
±
√
−c
a

+ (
b2

4a2
)

= − b

2a
±
√
b2 − 4ac

4a2

= − b

2a
±
√
b2 − 4ac

2a

as desired.
Of course, when solving a quadratic equation with this approach, it might

make more sense (at least initially) to solve it step by step rather than apply
the formula. For example, given the equation 2x2 + 5x− 8 = 0, the first step
is to divide the equation through by 2, yielding x2 + 5

2
x−4 = 0. At this point

we can apply our reduced quadratic formula with d = 5
2

and e = 4, yielding

x = −5

4
±
√

4 +
(

5

4

)2

= −5

4
±
√

4 +
25

16

= −5

4
±
√

89/16

=
−5±

√
89

4
.

In truth, one can skip the last three lines here as the first statement is correct,
it just isn’t simplified in the standard way. Of course, depending on what
you want the answer for, it doesn’t need to be simplified.

4.1 Solving Simple Cubic Equations

Now, let us think about these geometric methods and what they might mean
in three dimensions. Consider a cube of side length u, with a little cube cut
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out of the corner having side length v. The volume of this figure is then
u3−v3. Breaking the shape into 4 pieces as in the figure, however, we obtain
a different formula for the volume, namely (u − v)3 + 3uv(u − v). At this

point, we have the formula

��
��
��

�
��
�
��

�
��
�
��

��
��
��

��
�

u

v
v

v

u− v
u− v

u

(u− v)3 + 3uv(u− v) = u3 − v3.

Suppose we let x = (u−v), then this formula becomes x3 +(3uv)x = u3−v3.
Consequently, we might be able to use this to solve cubic polynomials of
certain types.

Suppose we are to solve the equation x3 + px = q where p and q are both
positive. If we want to use the above to attempt to solve this problem, we
would let x = u − v, and we would want to find u and v such that 3uv = p
and u3− v3 = q. Solving the first of these equations for v, we obtain v = p

3u
.

Substituting this in for v in the second equation, we obtain

u3 −
(
p

3u

)3

= q.

Multiplying this equation through by u3, we then obtain

u6 −
(
p

3

)3

= qu3.

This equation becomes a quadratic in u3, yielding

(u3)2 − q(u3)−
(
p

3

)3

= 0.
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We can now use the quadratic formula to obtain a value for u3. Namely,

u3 =
q

2
±
√(

q

2

)2

+
(
p

3

)3

.

Hence

u =
3

√√√√q

2
±
√(

q

2

)2

+
(
p

3

)3

.

We can now plug the value for u3 into the equation u3 − v3 = q to obtain
that

v3 =
q

2
±
√(

q

2

)2

+
(
p

3

)3

− q

= −q
2
±
√(

q

2

)2

+
(
p

3

)3

.

Thus, taking the cube root, we obtain that

v =
3

√√√√−q
2
±
√(

q

2

)2

+
(
p

3

)3

.

As the quantity under the square root sign is necessarily positive, once we
choose which of the square roots we use for u, we get a unique real solution.
Suppose for the time being that for u we take the positive square root. As
x = u− v, we end up with the solution:

x =
3

√√√√q

2
+

√(
q

2

)2

+
(
p

3

)3

− 3

√√√√−q
2

+

√(
q

2

)2

+
(
p

3

)3

.

Curiously, as you will show in homework ??, choosing the other sign for u
yields the same answer for x. This technique gives us at least one solution
to the equation in the case where p and q are both non-negative.

Example 1: Consider the equation x3 + 2x = 8. In this case, p = 2 and
q = 8. Using our formula, we have

x =
3

√√√√
4 +

√
42 + (

2

3
)3 − 3

√√√√−4 +

√
42 + (

2

3
)3
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=
3

√√√√
4 +

√
16 +

8

27
− 3

√√√√−4 +

√
16 +

8

27

=
3

√√√√
4 + 2

√
4 +

2

27
− 3

√√√√−4 + 2

√
4 +

2

27
.

Example 2: Consider the equation x3 + 3x = 14. In this case, p = 3 and
q = 14. For the given solution above, we have p

3
= 1 and q

2
= 7. Thus a real

solution is given by

x =
3
√

7 +
√

72 + 13 −
√
−7 +

√
72 + 13.

Simplifying this expression, we see that

x =
3
√

7 + 5
√

2− 3
√
−7 + 5

√
2.

Before going on and trying to pull out a factor from our equation above so
that we can use the quadratic formula, let us take a minute and see if we can
simplify this term at all. If we plug this into our calculator, we find that it
is so close to 2 that our calculator thinks it is 2. So, we have to ask, is it 2?

We have actually discussed a question like this before. If it is 2, then we

would know that {1, 3
√

7 +
√

72 + 13,
√
−7 +

√
72 + 13} is a linearly depen-

dent set over Q. (Of course, if it isn’t 2, that does not establish that the set
is independent.) Now that we know we have seen the question before, does
that help us solve it? Well, not really. The difficulty is that we need to find
out whether there is an easier way of writing the cube root of 7 + 5

√
2. We

might guess that the cube root should have the form a+b
√

2 for two rational
numbers a and b. If so, then we would know that (a + b

√
2)3 = 7 + 5

√
2.

On the bright side, we can actually cube the left hand side. Doing this, we
obtain

7 + 5
√

2 = a3 + 3a2b
√

2 + 3a(b
√

2)2 + (b
√

2)3

= a3 + 3a2b
√

2 + 3ab2 · 2 + 2b3
√

2

= a3 + 6ab2 + (3ab2 + 2b3)
√

2.

Since we know that {1,
√

2} is linearly independent over the rational numbers,
the only way we can have 7 + 5

√
2 = a3 + 6ab2 + (3ab2 + 2b3)

√
2 is if

a3 + 6ab2 = 7 and

3a2b+ 2b3 = 5.
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If we are really lucky, we can solve this by inspection, and in this case we are
quite fortunate in that a = 1 and b = 1 is indeed a solution. Thus

3
√

7 + 5
√

2 = 1 +
√

2.

A similar check shows that

3
√
−7 + 5

√
2 = −1 +

√
2,

so that

x =
3
√

7 + 5
√

2− 3
√
−7 + 5

√
2

= (1 +
√

2)− (−1 +
√

2)

= 2,

as we suspected.
This example has shown us that writing numbers with radicals is fraught

with dangers. Numbers that don’t even look like rational numbers might
turn out to be rational numbers. We could have seen this just using square

roots since
√

3 + 2
√

2 = 1 +
√

2, but the example above actually arises quite
naturally from our solution to the cubic equation. In fact, if you look at the
original equation, you can immediately see that x = 2 is a solution.

While we initially assumed p and q are both positive, we only needed to
do this because we were talking about lengths and volumes. However, the
algebraic statement u3 − v3 = 3uv(u − v) + (u − v)3 is true independent
of the volume argument. Consequently, we need not assume that both u
and v are positive for the argument to make sense. Consequently, we can
try and do everything the same way, even when p and q are not necessarily
positive. So what might go wrong in this case? A difficulty might arise
because the quantity under the square root sign might be negative, leading
to an imaginary square root, which we don’t know how to take the cube root
of. For example, consider the equation

x3 − 15x = 4

For our solution, we have p = −15 and q = 4. Thus p
3

= −5 and q
2

= 2.
Plugging these values into the equation, we obtain:

x =
3
√

2 +
√

22 − 53 − 3
√
−2 +

√
22 − 53

=
3
√

2 +
√
−121− 3

√
−2 +

√
−121.
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In this case, it is not at all clear what to do. However, if we look at the
original equation, x = 4 is a solution! This was, in fact, one of the equations
that had the Italian mathematicians stymied.

The Italian mathematician Bombelli had a “wild” idea. He thought to
treat

√
−1 as just another algebraic symbol. Working as we did above on

taking the cube root of 7 + 5
√

2, he attempted to find numbers a and b so
that

(a+ b
√
−1)3 = 2 +

√
−121.

Setting
√
−121 = 11

√
−1, Bombelli cubed the left hand side to get

a3 − 3ab2 + (3a2b− b3)
√
−1 = 2 +

√
−121.

Thus, he needed to find values for a and b such that

a3 − 3ab2 = 2 and

3a2b− b3 = 11.

One solution is given by a = 2 and b = 1. Thus 3
√

2 +
√
−121 = 2 +

√
−1.

The cube root of −2+
√
−121 turns out to be −2+

√
−1, so that the Cardano

method of solving the cubic yields

x = 2 +
√
−1− (−2 +

√
−1) = 4

as we expected.

Teaching and Historical Aside:
Many textbooks assert that the complex numbers arose in mathematics to

solve the equation x2+1 = 0, which is simply not true. In fact, they originally
arose as in the above example. The complex numbers were certainly not
accepted as anything more than a useful tool for centuries. A century ago,
the great mathematician Felix Klein gave the following description of the
history of the complex numbers [4]

...imaginary numbers made their own way into arithmetic cal-
culation without the approval, and even against the desires of
individual mathematicians, and obtained wider circulation only
gradually and to the extent to which they showed themselves use-
ful. Meanwhile the mathematicians were not altogether happy
about it. Imaginary numbers long retained a somewhat mystic
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coloring, just as they have today for every pupil who hears for
the first time about that remarkable i = sqrt−1. As evidence, I
mention a very significant utterance by Leibniz in the year 1702,
“Imaginary numbers are a fine and wonderful refuge of the di-
vine spirit, almost an amphibian between being and non-being.”
In the eighteenth century, the notion was indeed by no means
cleared up, although Euler, above all, recognized their fundamen-
tal significance for the theory of functions. In 1748 Euler set up
that remarkable relation:

eix = cos x+ i sin x

by means of which one recognizes the fundamental relationship
among the kinds of functions which appear in elementary analysis.
The nineteenth century finally brought the clear understanding of
the nature of the complex numbers.

What Klein doesn’t mention is the difficulty that many great mathematicians
had dealing with the complex numbers. In one paper, Leibniz argued that

√
i

was not a complex number, apparently not recognizing that ( 1√
2

+ i 1√
2
)2 = i.

This difficulty was a reflection of the difficulty mathematicians had earlier
with the concept of negative numbers.

Today, the complex numbers show up in physics problems, and do have a
geometric meaning as we shall explore below, in an attempt to find all of the
solutions to our cubic. Thus, when teaching about the complex numbers, it
is important to remember that we work with them because they are useful,
and that they are a natural extension of the idea of number.

End of Aside

At this point, we have a way to find real roots for some equations. Before
turning to the question of finding all roots, which will require investigating
the complex plane, let us first show how to use the special case solution to
solve the more general cubic.

4.2 The General Cubic Equation

Suppose we are given the equation

x3 + bx2 + cx+ d = 0.
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We would like to use our previous work to solve this problem, but the diffi-
culty is that this time we have a quadratic term (if b 6= 0). Consequently, we
would like to find a way to eliminate this term. At this point, let us return
to the quadratic equation and examine it again to see if we can find another
way to approach the general cubic.

Consider the function f(x) = x2 + bx+ c. Solving a quadratic equation is
equivalent to finding the roots of the function f(x). Rather than transforming
the problem its equation form, however, let us examine the function form
more. Certainly, the roots of the function g(x) = x2 + c can be easily found
to be x = ±

√
−c. Thus, it might be helpful to find a way to transform

the function f(x) into a function of the form g(x). How might we do this?
To come up with an answer, requires that we look at the properties of the
graph of g(x). The key element here is that the graph of g(x) is symmetric
about the y-axis. Thus, we would like to transform f(x) into a function that
is symmetric about the y-axis. The graph of f(x) is a parabola, and any
parabola is symmetric about a line through its vertex. Consequently, if we
translate the graph of f(x) sufficiently, we should be able to arrive at a case
where it too is symmetric about the y-axis. But what should be translate
the function by. There are several options here. One is to calculate f(x− d)
and discover what value of d eliminates the linear term, another would be
to guess and check, and a third would be to use calculus to find the x-value
of the vertex (where f ′(x) = 0). Working through any one of these ideas,
we see that the appropriate value is to translate f(x) b

2
units to the right.

Calculating

f(x− b

2
) = (x− b

2
)2 + b(x− b

2
) + c

= x2 − bx+
b2

4
+ bx− b b

2
+ c

= x2 + (−b
2

4
+ c).

Consequently, the roots of f(x− b
2
) are ±

√
b2

4
− c. Using our translation, the

roots of f(x) are then

− b
2
±
√
b2

4
− c

as desired.
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How do we apply this to the cubic equation? We need to figure out how
much to translate the function to get the type of graph we want. If we
translate the function f(x) = x3 + bx2 + cx+ d by δ, we obtain the equation

f(x− δ) = (x− δ)3 + b(x− δ)2 + c(x− δ) + d

= x3 − 3δx2 + 3δ2x− δ3 + b(x2 − 2δx+ δ2) + cx− cδ + d

= x3 + (b− 3δ)x2 + (c+ 3δ2 − 2bδ)x+ (d− δ3 + bδ2 − cδ).

To eliminate the x2 term, we then must let δ = b
3
. Plugging this in above,

we have

f(x− b

3
) = x3 + (c+ 3

(
b

3

)2

− 2b
b

3
)x+ (d−

(
b

3

)3

+ b

(
b

3

)2

− c b
3

).

Simplifying this equation we obtain:

f(x− b

3
) = x3 + (c− b2/3)x+ (d+ 2b3/27− bc/3).

We can now find the roots of f(x − b
3
) by setting p = (c − b2/3) and q =

bc/3−2b3/27−d to obtain a value X which when plugged in for x in f(x− b
3
)

will yield 0. Once you have this value X, then X − b
3

will be a root of the
function f(x).

4.3 The Complex Plane

To see how to get all of the roots of a cubic, we need to analyze cube roots
more and see what happens with the case of having a negative value inside of
the square root. After all, we have found one root of a cubic polynomial, but
we know in general that there should be three such roots. Where does our
solution allow for this? It shows up in our solution when we move from u3 to
u. That is, we take a cube root, but there are really three different choices
for the cube root of a number when we work in the complex numbers.

Before going into too much detail here, we need to examine the complex
numbers more deeply, and we would like to attach some geometric meaning
to them. In the last chapter, we noted that we could treat extension fields
as vector spaces. In particular, thinking of the Complex numbers as a two
dimensional vector space over the real numbers and taking {1, i} as a basis
for this vector space, the complex number a + bi corresponds to the matrix
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(
a −b
b a

)
. We shall use this representation of the complex numbers together

with polar coordinates to obtain our geometric realization.
Thinking of the complex numbers as a two dimensional vector space over

the real numbers, we obtain a map between the complex numbers and the
Cartesian plane, where the number a+bi corresponds to the point (a, b) on the
plane. As discussed in the high school curriculum and calculus, in addition
to rectangular coordinates on the plane, we can use polar coordinates. In this
case, the number a+bi corresponds to the coordinate (r, θ), where a = r cos θ
and b = r sin θ. The difficulty with this polar representation is that addition
becomes quite difficult to define.

ri r
1

ra+ bi

�
�
�
�r

θ

On the other hand, if we use the polar representation in our matrix form,

then the matrix becomes

(
r cos θ −r sin θ
r sin θ r cos θ

)
. This matrix, however, can

be written as a product of two matrices(
a −b
b a

)
=

(
r 0
0 r

)(
cos θ − sin θ
sin θ cos θ

)
.

The two matrices here correspond to a dilation (or contraction) of the coor-
dinate plane by a factor of r and a rotation of the coordinate plane by the
angle θ. Thus, the complex number a+ bi can be thought of as representing
a geometric action on the coordinate plane. Moreover, since dilations and
contractions commute with the rotations, we can quickly see how to multi-
ply two complex numbers that are given in polar coordinates. That is, the
product of the complex numbers having polar coordinates (r, θ) and (s, φ) is
the complex number having coordinates (rs, θ + φ).
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The piece of the puzzle of complex numbers comes from the work of
Euler. In working with the exponential function and its Taylor series, Euler
examined what happens when evaluating eix. Of course, the meaning of
raising a number to a non-rational power is not easily described. When we
first discuss raising a number to a positive integer power, we describe it as
representing a repeated multiplication. We extend exponentiation to the
rational numbers by taking roots. The next extension to irrational powers,
on the other hand, must be done using limits in one way or another. Of
course, in the high school curriculum, we frequently gloss over this fact, but
we should remember that limits are there in the background. Even with
limits, however, it is unclear what we should mean when raising a number
to a complex power. The exponential function ex being somewhat easier to
deal with than other such functions as it has a nice Taylor’s series for the
function,

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . .

allows us a method to attack this question. Euler’s solution was to simply
use ix in place of x in the above equation, yielding:

eix = 1 +
ix

1!
+

(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ . . . .

Using that i2 = −1, and bringing the terms together that involve i, we obtain

eix =

(
1− x2

2!
+
x4

4!
− x6

6!
+ . . .

)
+ i

(
x

1!
− x3

3!
+
x5

5!
+ . . .

)
.

Examining these two terms more closely, however, we see that they corre-
spond to the Taylor series for cosx and sin x respectively, giving Euler’s great
formula

eix = cos x+ i sin x.

Thus, using the complex number r cos θ+ ir sin θ can be written as reiθ, and
in this form, the multiplication rule reiθ · seiφ = rsei(θ+φ) becomes easy to
remember. Moreover, using this, taking roots becomes simplified. Namely,
if you want the nth root of reiθ, you can simply raise this number to the 1

n

power, yielding (
reiθ)

) 1
n = r

1
n ei

θ
n .
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The above is only one root among n, however. To get the other roots, we
use the identity

eiθ = ei(θ+2kπ),

where k is an arbitrary integer to arrive a the general solution

(
reiθ)

) 1
n = r

1
n ei

θ+2kπ
n .

This gives us n different solutions for k = 0, 1, . . . , n − 1. At this point, we
can now finish the solution of the cubic.

Given an arbitrary cubic equation rx3 + sx2 + tx+u = 0 with r, s, t, and
u all real numbers and r 6= 0, we begin by dividing the equation through by
r, to obtain an equation of the form x3 + bx2 + cx + d = 0 where b = s/r,
c = t/r and d = u/r. At this point, we let x = x′−b/3 to obtain the equation
(x′)3 + px = q, where p = (c − b2/3) and q = bc/3 − 2b3/27 − d as we saw
earlier. At this point, we can solve for x′ to obtain that x′ = u− v, where

u =
3

√√√√q

2
+

√(
q

2

)2

+
(
p

3

)3

and

v =
3

√√√√−q
2

+

√(
q

2

)2

+
(
p

3

)3

.

While we have three choices for both u and v, we have one further constraint
in that 3uv = p. Thus, we choose our cube roots so that we have this
requirement, which can be done simply by checking that the angles add up
to either π or 0 depending on whether p is negative or positive. Then we
have three choices for x′ = u− v, and x = x′ − b/3.

Aside

At this point, we have looked at number as ratio, as magnitude, and
as being built up from roots. None of these really account for how we can
think of negative numbers. In fact, in the history of European mathematics,
negative numbers came after all of these understandings. Descartes, among
others, considered negative numbers as fanciful constructs. Even today, one
of the most difficult tasks of the middle school teacher is getting students
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to understand why the product of two negative numbers should be a posi-
tive number. Sfard argues that one cannot make this argument successfully
without using our desire for the number system to satisfy the distributive
law [11], or giving a new understanding of number. Complex numbers have
a similar difficulty associated to them. What we have seen in this section,
however, is that we can give these numbers a geometric meaning, if we con-
sider them not as quantities that measure something, but rather as functions
on the Euclidean plane (like matrices).

This understanding of number, opens up a whole new realm of mathe-
matics. Numbers need no longer have a specific meaning. Instead, numbers
are classified by the properties they have. This allows for one to consider
more and more general sorts of “numbers,” and even to analyze what the
properties themselves imply. This analysis of the properties devoid of the
actual entities becomes the basis of abstract algebra, the study of groups,
rings, fields, and integral domains. Indeed, in modern mathematics, the real
number system is one of many different systems that extends the rational
numbers.

End of Aside

4.4 Algebraic Numbers

We have seen that we can solve a cubic equation by using radical signs, and
the operations of addition, subtraction, multiplication, and division on the
coefficients. After the general cubic was solved, the next step in the mathe-
matics of solving equations was to solve the general quartic or fourth degree
equation by radicals. In current times, this is done most easily by first solving
a cubic that arises from the original equation (much like we used a quadratic
equation for our cubic solution) and then use this cubic solution to allow
us to change the problem to an easier quartic equation that we could solve.
The next step was to solve the quintic equation by radicals. Unfortunately,
try as hard as they might, no one could find a solution by radicals for many
years. Finally, it began to dawn on mathematicians that perhaps no solution
could be found. This result was then first proved by Niels Abel in the 1800s,
and then later Evariste Galois was able to create a theory, which allowed
mathematicians to determine precisely when a polynomial could be solved
by radicals. While Galois theory is beautiful and wonderful to study, it is
beyond the scope of this class, as is Abel’s proof of the impossibility of solv-
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ing the general quintic by radicals. (A great summary of this history can be
found in [13].)

If we cannot solve every quintic by radicals, this means that there must
be real numbers which cannot be found using the operations of addition,
subtraction, multiplication, division, and taking nth roots on the rational
numbers. Thus, yet again, we need to extend our definition of what a number
should be. Our study of the complex numbers, however, has also given us
a certain amount of freedom, as we might now realize that we can allow for
numbers to be defined less concretely.

We say the real number α is algebraic if α is the root of some polynomial
with rational coefficients. For example, 3

√
3 is algebraic since it is the root of

the polynomial x3 − 3. If a number is not algebraic, then we say that it is
transcentdental. It is unclear whether any number can be transcendental at
first glance. Certainly, most numbers that we might write down are algebraic.
It turns out that both e and π are transcendental, although this is quite
difficult to show. Our goal in this section will be to show that the algebraic
numbers form a subfield of the real numbers, and then to show that one
specific number is transcendental via a technique due to Liouville.

As we saw earlier, if α is a root of the polynomial p(x), and p(x) is
irreducible over the rational numbers, then Q[α] is finite dimensional over Q.
Now, suppose β is also the root of an irreducible polynomial with rational
coefficients. Let q(x) be a polynomial of minimal degree having β as a root.
Again, we have that [Q[β] : Q] is finite. Unfortunately, we do not yet have the
matter in hand to show that Q[α, β] is finite dimensional over Q. However,
we know that g(x) is a polynomial over Q[α] since all of its coefficients lie
in Q ⊆ Q[α]. Thus, a polynomial of Q[α] of minimal degree having β as
a root, must have degree smaller than the degree of g(x). Consequently,
[Q[α, β], Q[α]] ≤ [Q[β], Q], and Q[α, β] is finite dimensional over Q since it
is the product of dimQ[α](Q[α, β]) and dimQ(Q[α]), both of which are finite.

At this point, let us set E = Q[α, β]. As E is a field, α + β, α − β, αβ,
and α/β are all elements of E. Thus, if we can show that any element of
E must be a root of some polynomial with rational coefficients, we would
have that this is true for αβ, α + β, α − β, αβ, and α/β. But this last is
precisely what we need to see that the algebraic numbers form a field! Thus,
we have reduced that problem of showing the algebraic numbers are a field,
to showing that any element of E must be the root of a (non-zero) polynomial
with rational coefficients.

Let γ ∈ E, suppose dimQ(E) = k, and consider the set {1, γ, γ2, γ3, . . . , γk}.
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Since this set has k+ 1 elements, it follows that it is linearly dependent over
Q. That is, there exist elements a0, a1, . . . , ak ∈ Q not all equal to 0, such
that

k∑
i=0

aiγ
i = 0.

This, however, implies that γ is a root of the polynomial

k∑
i=0

aix
i.

Thus, we have shown:

Theorem 4.1 The algebraic numbers form a field.

4.5 Transcendental Numbers

The question now becomes: Is every real number algebraic? Euler gave the
first definition of transcendental numbers, numbers that are not the root of
any nonzero polynomial with rational coefficients. Euler, however, was un-
able to prove that any number was transcendental, although there is good
evidence that he believed that both e and π were transcendental. The proof,
however, of the existence of a transcendental number had to wait about
50 years, until 1844 when Liouville proved that

∑∞
n=1 10−n! was transcenden-

tal (along with many other similar numbers). While this result proved the
existence of transcendental numbers, it did not show that any particularly
interesting number (at the time) was transcendental. In 1873, however, Her-
mite proved that e was transcendental. In 1874, Cantor produced a startling
result showing that transcendental numbers existed, although it did not pro-
duce any. More curious, Cantor showed that most real numbers are in fact
transcendental, even though at the time, only few numbers could be written
down and proved to be transcendental. By 1883, Lindemann showed that
π was transcendental. Lindemann’s work, while settling the question of the
squaring of the circle, however, is not considered quite as grand as Hermite’s,
since Lindemann essentially used the same techniques as Hermite in a little
bit more generality. In 1900, Hilbert presented a list of 23 problems for
mathematics to answer in the new century. The seventh problem of Hilbert
was to determine whether or not 2

√
2 was transcendental. The problem was
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answered in 1934 when A.O. Gelfond proved the result (also done indepen-
dently in 1935 by T. Schneider) that if α and β are algebraic numbers with
α 6= 0, α 6= 1, and β not a real rational number, then any value of αβ is
transcendental. (See [6] pp.134-150 for a historical treatment and proof of
this remarkable result, while the original works by Gelfond and Schneider can
be found in [?] and [9], although more readable expositions of these results
can be found in [3].)

How can one show that a number α is transcendental? To do so, requires
proving somehow that no non-zero polynomial with rational coefficients can
have α as a root. We can make things a little easier by reducing this problem
to the case where the polynomials are only allowed to have integer coefficients,
since we can multiply through by a common denominator of the coefficients.
As with the proofs of irrationality, we need to use proof by contradiction in
this case. That is, we will need to assume that our candidate α is the root
of a polynomial with integer coefficients, and then obtain a contradiction.
Liouville was able to use this method and calculus to show that the number∑∞
n=1 10−n! was transcendental. We now prove this.

Theorem 4.2 The real number α =
∑∞
n=1 10−n! is transcendental.

Proof: Suppose that p(x) is a polynomial with integer coefficients such that
p(α) = 0. We shall aim for a contradiction by showing that if α is the root of
this polynomial, then there are only finitely many rational numbers a

b
such

that |α− a
b
| < b−n−1 where n is the degree of p(x). Using this together with

|α−∑k
n=1 | < 10−(k+1)!, will give us the desired contradiction since

∑k
n=1 = a

b

where b = 10−k!.

Now, suppose that a, b ∈ Z are such that p(a
b
) 6= 0 (note that there are

only finitely many rational numbers that do not satisfy this property). Since
the coefficients of p(x) are all integers, it must be the case that that p(a

b
) = A

bn

for some integer A 6= 0, where n = deg(p(x)) (show this!).

The second step in the proof is to get some control on the values that
p(x) can take on nearby α. Since [α−1, α+1] is a closed interval and p(x) is
a polynomial, it follows that |p′(x)| ≤ m for some integer m on the interval
[α− 1, α + 1].

At this point, we suppose a
b
6= α is a rational number in the interval

[α − 1, α + 1]. For the time being, we shall assume that a
b
< α and that

p(a
b
) < 0, and is therefore less than or equal to 1

bn
. As p′(x) < m on [c, d], if
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follows that the graph of p(x) lies below the graph of the line ` given by the
equation

(y +
1

bn
) = m(x− a

b
).

More precisely, p(x) ≤ m(x− a
b
)− 1

bn
.

-�

6

?

t t
t���

�
�
�
�
�
�
���

�
�

�	

(a
b
, 0) (α, 0)

`

(a
b
, −1
bn

)

This can be established by using the mean value theorem from calculus, which
implies that if the inequality is not satisfied, then p′(x) > m for some x in
the interval. Alternatively (and probably more intuitively, one can apply the
racetrack principle [14]). (The technical proof with the mean value theorem
is that p(x) is continuous on the interval [a

b
, x] with the derivative continuous

on (a
b
, x), so that the mean value theorem implies for some c ∈ (a

b
, x), we

have

f ′(c) =
p(x)− p(a/b))

x− a
b

.
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Since f ′(c) ≤ m, it follows that

p(x) ≤ mx−ma

b
+ p(a/b) ≤ mx−ma

b
− 1

bn
,

where the last term follows because we have assumed that p(a/b) < 0 so that
p(a/b) < 1

bn
from above.)

Thus, the value of α is greater than the x-coordinate of the intersection
point of ` and the x-axis. We can calculate this coordinate, however, and it
is δ = a

b
+ 1

mbn
. Consequently,

|α− a

b
| ≥ 1

mbn
.

If b > 2m, however, we then have

|α− a

b
| ≥ 2

bn+1
.

Choosing t > 2m sufficiently large, it follows that for any b > t, if |α− a
b
| ≤

2
bn+1 it must be the case that a

b
∈ [c, d]. However, we also just showed that

if a
b
6= α then |α− a

b
| > 2

bn+1 . Consequently, there can only be finitely many
rational numbers a

b
having the property

|α− a

b
| < 2

bn+1
.

(Note that if we had assumed that p(a/b) > 0 and/or a/b > α, we would
merely have changed which line we were looking at, and we still would obtain
the same final result.) At this point, we are nearly done with the proof that
α =

∑∞
n=1 10−n! is transcendental. Let qk =

∑k
n=1 10−k!. Then

|α− qk| =
∞∑

n=k+1

10−n! ≤ 2

10(k+1)!
.

However, qk = ak
bk

= ak
10k! for some integer ak, and bk = (10k!)n+1 = 10(n+1)(k!).

If k > n, however, we then have the difference

|α− qk| <
2

10(k+1)!

=
2

10(k+1)(k!)

<
2

10(n+1)(k!)

=
2

bn+1
k

.
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Since qk has the property for all k > n that |α− qk| < bn+1
k , it follows that α

cannot be algebraic.
Q.E.D.

Most analytic number theory texts prove the general statement of Liou-
ville’s theorem, which can be read out of our proof. Namely that

Theorem 4.3 If α is a real algebraic number, then there exists only finitely
many rational numbers q = a

b
(where a and b are integers with b > 0) such

that |α− q| < 2
bn+1 .

The choice for this presentation was to concentrate on one specific number.

Aside

Why go through this proof at all? I have two reasons. The first is that
we frequently tell our students that e and π are transcendental numbers,
without truly understanding what this means. Unfortunately, the proofs for
the transcendence of e and π are both substantially more difficult than the
proof that we gave in Chapter 2 that π was irrational, and consequently, it
is really beyond the high school curriculum. On the other hand, the only
material really needed for the proof of Liouville’s theorem are the concept
of slope or rate of change and the understanding of what value polynomials
with integer coefficients can take on rational numbers. While some might take
issue, pointing out that we used derivatives and continuity in our proof, both
of these concepts can be understood at a lower level by drawing graphical
representations of polynomials, while leaving the capital P Proof for later
courses. Moreover, one can turn the Mean Value Theorem with the race
track lemma (as put in [14]), that can be put simply as: if two race tracks
are going around a track, and the first car is always going faster than the
second car, then the first car is always ahead of the second car. This readily
believed lemma on race cars works with our polynomials to establish that
the polynomial must lie between the two lines.

Thus, from this one can get a better understanding of some of the proper-
ties distinguishing algebraic numbers from transcendental numbers from this
proof. In particular, the idea that there is a limit to how well one can ap-
proximate algebraic numbers, whereas at least some transcendental numbers
can be approximated remarkably well. You should note in fact, the similarity
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that this argument has with several of our proofs of irrationality. The one
difference is that the level of approximation required is much tighter in the
transcendence proof than it was in the irrationality proof.

At this point, it makes sense to emphasize the role of proof in mathemat-
ics. The standard argument is that proof allows us to know something with a
certainty. While this certainty is important in many cases, what is probably
more important is the role of proof in mathematical problem solving. When
solving a problem in mathematics, proof can play a very important part.
Schoenfeld says [10]

For the mathematician, dependence on argumentation as a form
of discovery is learned behavior, a function of experience. This
perspective is not “natural”; few B.A.s in mathematics possess it.
Those who become mathematicians generally develop this per-
spective in graduate school, during their apprenticeship to the
discipline. At first, “proof” is mandatory, an accepted standard.
As one becomes acculturated to mathematics, it becomes nat-
ural to work in such terms. “Prove it to me” comes to mean
“explain to me why it is true,” and argumentation becomes a
form of explanation, a means of conveying understanding. As
the mathematician begins to work on new problems (perhaps on
a dissertation), this progression continues. Mathematical argu-
ment becomes a way of convincing oneself that something ought
to be true. Even unsuccessful attempts turn out to be valuable,
because consistent failures point to weak spots in one’s under-
standing. After numerous attempts to demonstrate a particular
result, one can see a pattern in the failures and decide the result
may not be true. To see if it is false, one may try to construct
some examples that exploit the weak spots. If none of the exam-
ples one tries demonstrate that the result is false, one may again
begin to believe the result is true - and a pattern in the failed
examples may suggest the information that was missing from the
original attempts. Thus mathematical argument becomes a tool
in the dialectic between what the mathematician suspects to be
true and what the mathematician knows to be true. In short,
deduction becomes a tool of discovery. (pp.172-173)

An important point here is the idea of mathematical argument as a tool for
understanding and learning. For example, the proof that the product of two
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odd integers is odd, can be used several different ways in a classroom. If the
teacher presents it, then it becomes an exercise in writing a proof. In this
fashion, however, students will disengage from the process, or learn it by rote
without understanding. A second method can be for the students to complete
the proof themselves, may well feel like busy work to the students. A third
method is to have the students analyze the proof and see what they can say
if odd is replaced by divisible by three. The natural proof (before Euclid’s
Lemma is introduced to students) for the odd multiples is to write down two
arbitrary odd numbers as 2k+ 1 and 2l+ 1 and to multiply them out. When
trying to see how this works for the case of 3, the students can discover how
to break the problem into separate cases, to arrive at arithmetic modulo 3.
Similarly, when discussing geometric constructions, it is the knowledge of
what theorems are true and how to apply them that is crucial in developing
geometrical constructions.

For the above reasons, one of the important tools to learn in any math-
ematics class is the role of proof in discovery. Reasoning plays a major role
in the NCTM standards. One major understanding is the varying levels of
proof (from heuristic and intuitive argumentation to formal) and their role
in problem solving. One possible interpretation (mine) for how teachers can
help students develop mathematical reasoning and problem solving skills is
by varying the levels as one moves through the curriculum.

End of Aside



Chapter 5

Dedekind Cuts

5.1 Axioms for the Real Numbers

We are about to embark on the explicit construction of the real numbers from
the rational numbers. Before doing so, however, you should work through
the following questions. The purpose of these questions are to encourage you
to think about what properties we would like the real numbers to satisfy and
to work from a minimum set of axioms to define the real numbers.

To begin with, consider the following:
The guiding principle in defining the real numbers is the number line. What
are all the properties that the set of real numbers should have? You should
come up with at least twelve properties that are expected of the set (Hint:
Think about the entire field).

87
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Below we list the actual defining axioms for the real numbers. You may
well not have gotten all of them. In fact, it is fairly typical that students will
miss out on all of the axioms involving the order relationship <. One of the
reasons for this is that we tend to take the idea of order on the number line
for granted. Thus we tend to take it as a given that the order relation exists.
Moreover, we also often take it for granted that this relationship

The real numbers R are a set together with the two binary operations
+ : R × R → R, · : R × R → R, and the binary relation < on R under the
following thirteen axioms:

1. The operations + and · are associative.

2. The operations + and · are commutative.

3. The operation · is distributive over +. That is, for all a, b, c ∈ R,
a · (b+ c) = a · b+ a · c.

4. There exist at least two distinct elements in R.

5. There exists an element 0 ∈ R such that for all a ∈ R, a+ 0 = a.

6. For each element a ∈ R, there exists an element b ∈ R such that
a+ b = 0. We call this element −a.

7. There exists an element 1 ∈ R such that for all a ∈ R, a · 1 = a.

8. For each element a ∈ R, with a 6= 0 there exists an element b ∈ R such
that a · b = 1. We call this element a−1 or 1

a
.

9. The relation < is transitive on R.

10. (The Trichotomy Law). For every a, b ∈ R, exactly one of a < b, a = b,
and a > b is true.

11. For all a, b, c ∈ R, if a < b then a+ c < b+ c.

12. For all a, b, c ∈ R, if a < b and c > 0, then a · c < b · c.

13. (The Greatest Lower Bound Axiom) If S ⊂ R is a non-empty subset,
and there exists a lower bound b ∈ R such that for all a ∈ S we have
b ≤ a, then there exists a greatest lower bound c for S. That is, there
exists c ∈ R such that c < a for all a ∈ S and moreover, if b ∈ R also
satisfies the condition b < a for all a ∈ S, then c ≤ b.
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Using the axioms above, let us move on to prove some things that we
expect about the real numbers.

1. If x < y, then −y < −x. Hint: Assume x < y and add the same thing
to both sides of the inequality in order to establish that −y < −x.

2. 0 < 1. Although this statement seems obvious, you need to establish
this result using the pink sheets axioms. What are the three possible
ways of relating 0 and 1? Use the axioms to establish that what you
know is impossible is truly impossible.

3. If 0 < x < y, then 0 < 1
x
< 1

y
.

(a) Assume 0 < x < y. What are the possibilities for the relationship
between 0 and 1

x
?

(b) Argue why, from the set of axioms, two of these possibilities cannot
be true.

(c) What does this mean about 1
y
?

(d) Using 0 < x < y, multiply each element of the compound inequal-
ity by the same factor in order to establish 0 < 1

y
< 1

x
. Explain

why this is legal.

4. If x < y and z < 0, then yz < xz. Hint: Assume x < y and z < 0. Use
axiom 11 and a previous result to establish yz < xz.

5. Prove the Theorem:

Theorem 5.1 If S is a non-empty set of real numbers that is bounded
from above, then S has a least upper bound.

(a) Argue why if M is an upper bound for S, then M ≥ s for all
s ∈ S.

(b) Let T = {t | t = −s, for some s ∈ S}. Argue why −M is a lower
bound for T .

(c) Explain why if K is a lower bound for T , then −K is an upper
bound for S.

(d) Argue why T must have a greatest lower bound, call it B.
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(e) Argue why −B must be an upper bound for S.

(f) If C is an upper bound for S, then what is the relationship between
−C and B as well as −C with the set T?

(g) What is the relationship between C and −B? How does this imply
−B is the least upper bound for S?

6. Prove the following theorem:

Theorem 5.2 Let x be any real number. Then there is an integer
n ≤ x < n+ 1.

In order to accomplish this, we need to define the set
A = {n | n ∈ Z and n ≤ x}.

(a) If A is non-empty, argue why A is bounded from above and has a
least upper bound (call it n0).

(b) Explain why if you subtract 1 from n0, the resultant value will not
be an upper bound of A.

(c) Discuss why there exists an m ∈ A such that n0 − 1 < m ≤ n0.

(d) Explain why m+ 1 /∈ A and x < m+ 1.

(e) How does this establish, for the case that A is non-empty, the
result that we can find an integer n such that n ≤ x < n+ 1.

(f) To show thatA is not empty, consider the setB = {b | b > x and b ∈ Z},
and show that it must have a least upper bound called b0. Argue
that there exists a m ∈ B such that b0 ≤ m < b0 + 1 so that
m− 1 ∈ A.

7. Prove the following theorem

Theorem 5.3 Between any two real numbers is both a rational number
and an irrational number.

(a) Let x and y be real numbers with x < y. Why is there an integer
N such that 0 < 2

y−x < N?

(b) Argue why there exists an integer n ≤ Nx < n+ 1.

(c) Argue why n+ 2 < Ny.

(d) Explain why n+1
N

and n+2
N

are rational numbers between x and y.

(e) Explain why n+
√

2
N

is an irrational number between x and y.
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5.2 Dedekind Cuts

Descartes’ Geometry is an important advance in mathematics, because it
gives the first instance of a mathematician writing equations for geometric
figures (although, the equation of a line occurs only once within the text
[12]) and it gives the first idea of calculating the normal to a curve. Moving
forward in time, Leibniz and Newton develop calculus using the idea of the
coordinate axes and rates of change, and as we have seen earlier, questions
about algebraic and transcendental numbers begin to be raised by Euler in
the 1700s. Cauchy defines and “proves” that Cauchy sequences converge in
the early 1800s, but curiously, it is not until the 1890s that mathematicians
realized that they did not have a proper definition of the real numbers. In
some ways, this isn’t so surprising. The move to axiomatize all mathematical
systems is a product of the late 1800s and the discovery of non-Euclidean
geometries, and the real numbers seen as points on the number line are
well defined by intuitive standards. Moreover, calculus and analysis were
extremely successful without worrying about foundational issues. On the
other hand, as we shall see later, even such great mathematicians as Cantor,
were prone to make subtle errors when dealing with the real numbers.

In the 1890s, Richard Dedekind taught a calculus course in Germany. He
decided that he wanted to start from the basic definitions and put calculus
on a firm foundation. As he began to design the course, he ran into trouble
proving the intermediate value theorem, one of the important foundational
theorems of the calculus. After struggling with this, he realized that the
problem was that he had no strict definition of the real numbers to work
from.

Theorem 5.4 (The Intermediate Value Theorem) If f(x) is a continuous
function on the closed interval [a, b] with f(a) < 0 and f(b) > 0, then there
exists c ∈ (a, b) such that f(c) = 0.

The proof of this theorem uses the greatest lower bound axiom. Namely that
every non-empty set of real numbers that has a lower bound has a greatest
lower bound. To prove the theorem, one considers the set C = {x ∈ [a, b] |
f(x) ≥ 0}. The set C is non-empty since b ∈ C, and the set has a lower
bound since a < x for all x ∈ C. Thus C has a greatest lower bound, which
we shall call c. At this point, all that remains is to prove that f(c) = 0. To
see this, we use the continuity of f . By continuity and the knowledge that
f(b) > 0 and f(a) < 0, it follows that c ∈ (a, b). Now, since for all d /∈ C,
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we know that f(d) ≤ 0, we have that f(c) ≤ 0 as f(x) is continuous. On
the other hand, for all δ > 0, there exist a y ∈ C such that y < c+ δ since c
is a greatest lower bound. However, then f(y) ≥ 0. Thus, continuity again
implies that f(c) ≥ 0, leaving us with f(c) = 0.

This is the modern proof of the theorem, where we take one of the com-
pleteness axioms as part of the axiomatic definition of the real numbers.
Consider Dedekind’s problem, however. The real numbers are not axiomat-
ically defined, but rather they are intuitively defined by the number line.
The greatest lower bound axiom is only true intuitively in this situation, and
can hardly be called on in a late 19th century perspective. Thus, Dedekind
needed to construct the real numbers in some way. His insight was to use
the intuition of the number line in his construction. That is, he reasoned
that every point on the number line breaks the real line into two separate
pieces, and he wanted to use the pieces to identify the numbers. The down
side of this attempt is that the pieces consist intuitively of real numbers,
and you cannot use the real numbers in defining what the real numbers are!
On the other hand, the rational numbers were well-defined at this time, so
Dedekind reasoned that to determine the two pieces of the number line, it
was sufficient to consider only the rational numbers in each piece. From this
intuition, Dedekind gave the following definition:
Definition: A Dedekind cut is a pair (A,B) of non-empty sets such that

1. A ∪B = Q,

2. A ∩B = ∅, and

3. If a ∈ A and b ∈ B, then a < b.

Dedekind’s goal was to define the real numbers as the set of Dedekind
cuts. However, one needs to be careful about this. If the intuition is to
think about how the line breaks into pieces, the point at which you break
the line needs to end up on one side or the other. If the point that you
break the number line at is not rational, this isn’t a problem since the pieces
now consist only of the rational numbers. However, if you break the line at
a rational point, then you do have a problem, and a choice has to be made
about which one of the two sets to put it in. We will take Dedekind’s point of
view, which is different from most modern authors, in that we will consider
each of these to be a Dedekind cut. That is, given a rational number q, there
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are two cuts associated to q, namely the cut (Aq, Bq) given by

Aq = {a ∈ Q | a ≤ q}
Bq = {b ∈ Q | b > q},

and the cut (Aq, Bq) given by

Aq = {a ∈ Q | a < q}
Bq = {b ∈ Q | b ≥ q}.

In the modern treatment, a Dedekind is defined slightly differently. In par-
ticular, a cut is usually a single set corresponding to only one of our two
sets.

We define an equivalence relation on Dedekind cuts so as to ensure that
the two cuts associated to the same rational number are equivalent. To this
end, we say that the cuts (A,B) and (C,D) are equivalent if (A∪C)\(A∩C)
is a set consisting of at most one element. That is, the sets A and B differ
by at most one element.

We now define the real numbers as the set of equivalence classes of
Dedekind cuts. At this point, we need to define the operations and order
relation. One can make most of these definitions easier by assuming that if
(A,B) is a rational cut, then the corresponding rational number is an element
of B. While we will not do this in general, we will state these definitions in
parentheses after our definitions. The reason for this change is that we want
to be able to work with either element of the equivalence class. Basically,
you either have to work with a particular element of each equivalence class
or worry about proving that the operations we shall define are well defined.

We define the order relation < on R as follows: Given two non-equivalent
Dedekind cuts (A,B) and (C,D), we say that (A,B) < (C,D) if and only if
A ⊂ C. (The condition is not simplified by the assumption that if the cut
is rational then the rational point lies on the left hand side.) This condition
implies in our intuitive understanding of Dedekind cuts that the breaking
point of the number line determined by (A,B) lies to the left of the breaking
point of the number line determined by (C,D). We need to check that this
definition is well defined. Namely, that if we choose cuts equivalent to (A,B)
and (C,D), that we will not change the definition of the relation <.

Suppose now that (A,B) < (C,D) and (A′, B′) ∼ (A,B) and (C ′, D′) ∼
(C,D). By our assumptions, there exists c ∈ C such that c /∈ A. Since
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(A,B) 6∼ (C,D), there are at least two elements c, c′ of C that are not in
A. By the third condition for Dedekind cuts, c+c′

2
and 2c+c′

3
are also not

elements of A. As (A′, B′) ∼ (A,B), A′ contains at most one point that is
not contained in A. Similarly, C and C ′ differ by at most one element. As C
contains at least four elements not in A, C ′ must contain at least two elements
not in A′, implying that A′ ⊂ C ′ by condition 3. Since ∼ is an equivalence
relation, we have that (A′, B′) 6∼ (C ′, D′), so that (A′, B′) < (C ′, D′) as we
desired, proving that the relation < is well defined.

Pictorially, we have the following:

� -R
� a -A B

� -aC D

While here we have concentrated on the left hand sets, we could similarly have
concentrated on the right hand sets. The following proposition establishes
this:

Proposition 5.5 If (A,B) 6∼ (C,D) are two Dedekind cuts, then (A,B) <
(C,D) if and only if D ⊂ B.

Proof: We first prove the forward direction. Suppose (A,B) < (C,D).
Then A ⊂ C, implying there exists c ∈ C such that c /∈ A. Since A∪B = Q,
it follows that c ∈ B. By the third condition for Dedekind cuts it follows
that a < c for all a ∈ A. If d ∈ D, then by the third condition for Dedekind
cuts, it follows that c < d. Consequently, if a ∈ A, then a < d. In turn, this
implies that d ∈ B. Consequently, D ⊆ B. To see that D 6= B, it remains
to note that c /∈ D.

Conversely, if (A,B) 6∼ (C,D) and D ⊂ B, then there exists an element
b ∈ B such that b /∈ D. By the first condition for Dedekind cuts, it follows
that b ∈ C. By the third condition, we then have that for all d ∈ D, b < d.
If a ∈ A, then it follows that a < b. Therefore, a < d for all d ∈ D.
Consequently, a /∈ D, so that a ∈ C. Thus A ⊆ C, and the containment is
strict since b /∈ A.
Q.E.D.

Recall that (A0, B0) is one of the cuts associated to the rational number 0.
To simplify our notation, we shall write (C,D) > 0 to denote that (C,D) >
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(A0, B0). In a similar way, we will write (C,D) > q to denote that (C,D) is
greater than either cut associated to q.

At this point, we need to define the binary operation of addition.
Definition: For Dedekind cuts (A,B) and (C,D) we define (A,B) + (C,D)
to be the cut (E,F ) where

F = {b+ d | b ∈ B, d ∈ D}

and E = Q \F . (If we insist that rational cuts contain the rational point on
the right, then we can write E = {a + c | a ∈ A, c ∈ C}. Again, we should
check that this definition is well defined, but this is left to the reader.

Given that this definition is well defined, it is a straightforward check to
see that addition is commutative and associative, and thus we have that the
first two axioms are satisfied for addition.

To define multiplication of Dedekind cuts is unfortunately harder. In
particular, the difficulty of multiplying negative numbers comes back to haunt
us.
Definition: Given two Dedekind cuts (A,B) > 0 and (C,D) > 0, the
product of these cuts is defined to be the cut (E,F ) where

F = {bd | b ∈ B, d ∈ D}

and E = Q \ F .
Before moving on to define the product of negative cuts, let us first show

that this definition is well defined. Suppose that (A′, B′) ∼ (A,B) and
(C ′, D′) ∼ (C,D), and let F ′ = {bd | b ∈ B′, d ∈ D′}. Without loss of
generality, assume that D ⊂ D′, and the containment is proper. Then it
follows that D′ = D ∪ {q} where q is a minimal element of D′. We claim
that F ′ 6= F if and only if B is a proper subset of B′, and in this case F ′

and F differ by at most one element. Suppose first that B′ does not contain
a minimal element. Then if x = b′d′ for some b′ ∈ B′ and some d′ ∈ D′,
as B′ does not contain a minimal element (implying that B′ ⊆ B, there
exists a rational number b̃ ∈ B′ such that b̃ < b′. Consequently x

b̃
> d′, and

x
b̃

is therefore an element of D′ and also of D. This implies however that

x = b̃d ∈ F , so that F ′ ⊆ F . Next, suppose B′ contains a least element r.
Let x ∈ F ′. By the previous argument, x ∈ F if x = bq for some b ∈ B′ with
b 6= r. Similarly, the argument above would imply x ∈ F if x = rd for some
d ∈ D with d 6= q. Consequently, x ∈ F but x /∈ F ′ implies x = rq, and F ′

contains at most one element more than F , and only in the case where B′ and
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D′ both contain a minimal element but one of B or D does not. Reversing the
roles of F and F ′ above yields that F and F ′ differ by at most one element,
and thus (E,F ) ∼ (E ′, F ′). This argument is tedious; it does however bring
light to why the modern treatment simply insists on defining cuts in only
one direction. Namely, by doing so, we can avoid both equivalence classes
and the trivialities of proving the operations are well defined.

Actually, we still need to check that the product of two positive cuts is,
in fact, a cut.

Proposition 5.6 Let (A,B) > 0 and (C,D) > 0 be two Dedekind cuts, and
let (E,F ) be their product. Then (E,F ) is also a Dedekind cut.

Proof: Since B and D are both non-empty (as (A,B) and (C,D) are cuts,
it follows that there exists b ∈ B and d ∈ D so that bd ∈ F , and hence F
is non-empty. Since B and D consist only of positive numbers, so does F ,
so that 0 ∈ E and hence E is non-empty. The first two conditions for cuts
are satisfied since F ⊂ Q follows from the closure of the rational numbers
under multiplication, and then defining E = Q \ F forces E ∪ F = Q and
E ∩ F = ∅. Consequently, it remains to show the third condition. To see
this, we shall first show that x ∈ F and y ∈ Q with y > x implies y ∈ F .
As x ∈ F , x = bd for some b ∈ B and d ∈ D. Since y > x and b > 0,
y/b > x/b = d. Consequently, y/b is a rational number, and by condition 3
for the Dedekind cut (C,D) implies that y/b ∈ D. Thus y = b · (y/b) is an
element of F . Now suppose e ∈ E and f ∈ F . If e ≥ f , the above would
imply that e ∈ F , contradicting that E ∩F = ∅. Thus e < f as desired, and
(E,F ) is a Dedekind cut.
Q.E.D.

Before giving the general definition of multiplication, we next need to
define the negative of a cut (A,B). Given a cut (A,B), let −(A,B) denote
the cut (−B,−A) where

−A = {−a | a ∈ A}
−B = {−b | b ∈ B}

To see that (−B,−A) is a cut is straightforward as all but condition 3 fol-
low immediately from the same conditions for (A,B). The third condition
requires a little more work. Suppose x ∈ −B and y ∈ −A. Then x = −a for
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some a ∈ A and y = −b for some b ∈ B. By condition 3 for (A,B), we have
that a < b. Thus, using the rules of inequality for the rational numbers, we
have −b < −a, and hence x < y as desired. Therefore −(A,B) is a Dedekind
cut. To check that this is well-defined, suppose that (A,B) ∼ (C,D). Then
A and C differ by at most one element. From this it follows that −A and
−C differ by at most one element, implying that (−B,−A) ∼ (−D,−C).

Proposition 5.7 If (A,B) is a Dedekind cut with (A,B) < 0, then −(A,B) >
0.

Proof: From the above, we know that −(A,B) is a Dedekind cut. Thus,
it suffices to show that −(A,B) > 0. By the definitions, this requires us to
show that A0 ⊂ −B, and −(A,B) 6∼ (A0, B0). Recall that this means that
we need to show that if x < 0 then x ∈ −B, and that there exists some y > 0
such that y ∈ −B, as this would mean that −B contains at least two points
not in A0. But, x < 0 implies that −x > 0. As (A,B) < 0, we know that
B0 ⊂ B by proposition 5.5, so that −x ∈ B0 implies −x ∈ B. Thus x ∈ −B
as desired. Moreover, (A,B) > (A0, B0) also implies that B contains at least
two elements not in B0. I.e., B contains some negative rational number −y.
Thus y ∈ −B, and y > 0. Consequently −(A,B) > 0.
Q.E.D.

We are now ready to define multiplication of two arbitrary Dedekind cuts.
Let (A,B) and (C,D) be two cuts. Then

(A,B) · (C,D) =


(A,B) · (C,D) if (A,B) > 0 and (C,D) > 0
−( −(A,B) · (C,D) ) if (A,B) < 0 and (C,D) > 0
−( (A,B) · −(C,D) ) if (A,B) > 0 and (C,D) < 0
−(A,B) · −(C,D) if (A,B) < 0 and (C,D) < 0.

That this is a well-defined definition follows as multiplications of positive
cuts is well-defined, as is the definition of −(A,B).

At this point, we can prove the associative, commutative, and distributive
laws for multiplication and addition. The proofs, however, are tedious and
not terribly informative. We shall prove the commutative law for addition,
and leave it to the reader to check the others.

Proposition 5.8 If (A,B) and (C,D) are any two Dedekind cuts, then
(A,B) + (C,D) = (C,D) + (A,B).
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Proof: Let (A,B) + (C,D) = (E,F ) and (C,D) + (A,B) = (G,H). Then

F = {b+ d | b ∈ B, d ∈ D} (5.1)

= {d+ b | b ∈ B, d ∈ D} by the commutative law for addition of rational numbers(5.2)

= H. (5.3)

Thus (E,F ) = (G,H).
Q.E.D.This proof is similar to all of the proofs, in that they use the same

property for the rational numbers to establish it for the real numbers (as
Dedekind cuts). Note that this is similar to how we learn about the number
systems. We first learn the rules for the natural numbers, and having them
for the natural numbers, we extend the rule to the integers, having the rule for
the integers, we extend it to the rational numbers. Thus, extending the rules
to the real numbers from the rule for the rational numbers is quite natural.
This extension is also reflected in the NCTM standards, since students are
to learn the properties of addition and multiplication in elementary school,
and then that these properties hold true for the real numbers is a natural
extension.

There are several items we haven’t checked yet from our axiom system
for the real numbers. Namely, we need to check the following proposition:

Proposition 5.9 If (A,B) is a Dedekind cut, then (A,B) + (−(A,B)) = 0
(by which we again mean for 0 to represent the equivalent cuts corresponding
to 0).

Proof: Let this sum be the cut (C,D). Then D = {b+(−a) | b ∈ B, a ∈ A}.
Since (A,B) a cut implies that a < b for all a ∈ A and b ∈ B, it follows that
b+(−a) > 0 for all a ∈ A and all b ∈ B. We need to show next, that if x > 0
and x is rational, then x ∈ D, as this would tell us that D = {x | x > 0}.
Suppose x > 0 is a fixed rational number. Write this in lowest terms as
e
f
. Since (A,B) is a cut, there exists b ∈ B. Moreover, b is a rational

number, and can thus be written as g
h

for some positive integers g and h.
Since he and fg are positive integers, there exists a natural number n such
that n(he) > fg. Consequently nx > b. Choose n to be the least positive
integer such that nx ∈ B (which exists by the Well Ordering Principle for
the natural numbers). Then, (n − 1)x ∈ A since A ∪ B = Q. Moreover
nx + (−((n − 1)x)) = x is an element of D. Thus D consists of all positive
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rational numbers, and the cut (C,D) = 0 as desired.
Q.E.D.To establish this result, we again used fundamental properties of the

integers.
To finish up our axioms, we need to show that the cut associated to 1 is a

multiplicative identity, to define the multiplicative inverse of a non-zero cut,
and to establish our completeness axiom that a non-empty set of cuts with
a lower bound has a greatest lower bound.

For the first of these, note that if we look at the cut for 1 with 1 in
the set B1, then establishing that (A1, B1) is a multiplicative identity is
straightforward as given a cut (C,D), then (A1, B1) · (C,D) is defined to be
the cut (E,F ) where

F = {bd | b ∈ B1, d ∈ D}.

But b ∈ B1 implies that b ≥ 1. Thus bd ≥ d no matter what d is. Thus, if
d ∈ D, by the definition of a cut, bd ∈ D. Therefore, F ⊆ D. On the other
hand, d = 1d ∈ F for all d ∈ D since 1 ∈ B. Thus D ⊆ F , and it follows
that D = F , so that (C,D) = (E,F ) and we have the required result. (Note
that we should have proven (A0, B0) really was an additive identity, but the
proof of that is almost identical to the above proof.)

Thus, we need to define the multiplicative inverse. Again, we shall restrict
to the case where (A,B) > 0. In this case, we define the multiplicative inverse
of (A,B) by (A,B)−1 = (C,D), where D is given by

D = {1

a
| a ∈ A, a > 0},

and C = Q \D. Note that we had to be a little careful in our definition of
D as we could not simply choose for D the set of all inverses of elements of
A, since that would have given us all negative numbers, and consequently,
we would not have had a cut when we were done.

Proposition 5.10 If (A,B) > 0 is a Dedekind cut, then (A,B)−1 is a
Dedekind cut, and (A,B) · (A,B)−1 ∼ (A1, B1).

Proof: We begin by showing the (A,B)−1 is a cut. Let (C,D) be as above.
First, as (A,B) > 0, we have that there exists a positive rational number
q ∈ A. Thus 1/q ∈ D, so that D 6= ∅. Since 0 /∈ D, it follows that 0 ∈ C.
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Hence both C and D are not empty. Note that if q is a rational number,
then so is 1/q. Consequently, since A ⊂ Q, it is also the case that D ⊂ Q.
Now it is immediate that Q = C ∪ D and C ∩ D = ∅ by the definition of
C. Finally, suppose d ∈ D and c is a rational number greater than d. Since
d ∈ D, there exists a positive element a ∈ A such that d = 1

a
. As c > d > 0,

we have 0 < 1
c
< 1

d
= a. Since (A,B) is a Dedekind cut and hence satisfies

condition 3 for cuts, 1
c
< a implies 1

c
∈ A (since it is rational). Moreover,

as 1
c
> 0, it must be the case that c = 1

1
c

∈ D. Thus, if c > d is a rational

number, then c ∈ D. By the contrapositive of this, we have that if c ∈ C and
d ∈ D then c < d, establishing the third condition and showing that (C,D)
is a cut.

It remains to show that (A,B) · (C,D) ∼ (A1, B1). We will let (E,F )
be the product of the cuts (A,B) and (C,D). We will prove that (E,F ) ∼
(A1, B1) by showing that if x is a rational number greater than 1 then x ∈ F
and if x ∈ F then x > 1. Let q ∈ F . Then q = bd for some b ∈ B and some
d ∈ D. As d ∈ D, we have d = 1

a
for some positive a ∈ A. By condition 3 for

the cut (A,B), a < b so that b · 1
a
> 1. Thus q ∈ F implies q > 1. Conversely,

suppose q > 1 is a given rational number. Since (A,B) > 0, there exists
a ∈ A such that a > 0. Our goal is to use this a to find some a′ ∈ A and
b ∈ B such that b

a′
= q, as this would force q to be an element of F . How do

we find such an a′ and b? Noting that b
a′
< q is true if and only if b = qa′, it

makes sense to look at the sequence

a, qa, q2a, q3a, . . . .

At this point, we claim that for some n ∈ N , aqn ∈ A but aqn+1 ∈ B. To
see this, note that by writing q = 1 + δ, we have that qm > 1 + mδ for any
m ∈ N . Thus aqm > a + maδ. Since aδ > 0, by the Archimedean principle
for the rational numbers (which follows from the well-ordering principle), we
have for any b ∈ Q there exists an m ∈ N that aqm > b. Choosing b ∈ B,
we have for some m ∈ N that aqm ∈ B. Consequently, there is a least
n ∈ N such that aqn ∈ B. Thus aqn−1 /∈ B, so that aqn−1 ∈ A. Therefore,
q = aqn · 1

aqn−1 ∈ F . Since q > 1 was arbitrary, we have shown that F contains

every rational number greater than 1, and consequently (E,F ) ∼ (A1, B1)
as desired.
Q.E.D.

The next of our axioms with a proof that requires more than definition
chasing is the completeness axiom. We deal with this now. Recall that the
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version of the completeness axiom we chose to deal with was the greatest
lower bound law. (The other versions are the least upper bound principle
and the requirement that Cauchy sequences converge.)

Theorem 5.11 The set of Dedekind cuts satisfies the greatest lower bound
principle.

Proof: Let S be a non-empty set of Dedekind cuts that is bounded below.
Since S is bounded below, there exists a cut (A,B) such that (A,B) ≤ (C,D)
for all cuts (C,D) ∈ S. At this point, we are prepared to define our least
upper bound. Let (U, V ) be the pair of sets defined by

V = ∪(C,D)∈SD,

and U = Q \ V . Our first goal is to show that (U, V ) is a cut. Since S is
nonempty, there exists some (C,D) ∈ S. As (C,D) is a cut, D 6= ∅, but
D ⊂ V , so that V 6= ∅. On the other hand, let a ∈ A be a rational number,
and let a′ < a be another rational number. Since (A,B) is a cut, a′ ∈ A.
Let v ∈ V . By definition, this implies that v ∈ D for some cut (C,D) ∈ S.
If (A,B) < (C,D) then a′ < v. If (A,B) ∼ (C,D) on the other hand, as A
and C differ by at most one element, that element must be greater than or
equal to a. Consequently, a′ ∈ C again, and thus a′ < v. Thus a′ < v for
all v ∈ V . Thus a′ ∈ U and U 6= ∅. A straightforward argument shows that
U ∪ V = Q and U ∩ V = ∅. For the last condition, suppose v ∈ V and x > v
be a rational number. By definition of V , it follows that v ∈ D for some
D where (C,D) ∈ S. As (C,D) is a cut, the last condition for cuts implies
s ∈ D. Thus x ∈ V also. Consequently, if u ∈ U and v ∈ V , the condition
that U ∩ V = ∅ implies that u < v. Thus (U, V ) is a cut.

We now claim that (U, V ) is a greatest lower bound for S. First, note
that (C,D) ∈ S implies that D ⊆ V . Thus (U, V ) ≤ (C,D), and (U, V ) is a
lower bound for S. Suppose that (E,F ) is another lower bound for S. Let
x ∈ E and v ∈ V be given. By definition v ∈ D for some cut (C,D) ∈ S. As
(E,F ) is a lower bound for S, it follows that x ≤ v. This, however, implies
that (E,F ) ≤ (U, V ) as desired. Thus (U, V ) is a greatest lower bound for
S.
Q.E.D.

Thus, the Dedekind cuts are a model for the real numbers. The value of
this particular model, is that it arises naturally from the number line, which
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is the geometric motivation of the real numbers and many of our theorems
about them. We note here that the more modern treatment of Dedekind
cuts only considers one half of the cut. If you look back at our definitions of
multiplication, addition, inverses, etc. you will notice that in every case we
defined the lower half of the cut as the complement of the upper half of the
cut. Consequently, we might have saved ourselves some trouble by simply
defining cuts by their upper halves. This also allows for us to avoid the
difficulty of having two equivalent cuts. The down side is that this one-sided
definition is more complicated than the two sided definition, although this
definition is hidden in our proofs for the most part.

At this point, we are finally ready to define the number represented by
an arbitrary infinite decimal

∞∑
n=−k

an10−n,

where ai ∈ {0, 1, . . . , 9}. There are two ways to approach this right now.
The standard technique, which works independent of whether we have used
Dedekind cuts to define the real numbers or not, is to let

S = {
l∑

n=−k
an10−n | l = 1, 2 . . .},

and to define the infinite decimal expansion as the least upper bound of the
set S. Since we know that any non-empty set has a least upper bound by
Theorem 5.1, every infinite decimal corresponds to a unique real number.
That 1 = .9 then simply states that two slightly different sets have the
same least upper bound, which seems reasonable since two ratios might also
represent the same real number. On the other hand, we can explicitly use
Dedekind cuts to define infinite decimals. That is, we define the real number
associated to ∞∑

n=−k
an10−n

to be the Dedekind cut (A,B), where

A = {x ∈ Q | x ≤
l∑

n=−k
for some l = 1, 2, . . .},

and B = Q \ A. Let us look at what happens in this case when we look at
the cuts for 1 and for .9. Writing (A,B) for the cut associated to 1 = 1.0,
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we see that A = {x ≤ 1 | x ∈ Q}, while B = {x > 1 | x ∈ Q}. Writing
(C,D) for the cut associated to .9, we see that C = {x < 1 | x ∈ Q}, while
D = {x ≥ 1 | x ∈ Q}. While these two cuts are not the same, they are
equivalent! That is, the two decimals represent different but equivalent
cuts. In this case, one can then see the different decimal representations
of the number 1 as naturally corresponding to distinct but equivalent cuts.
Thus, these two decimals correspond naturally to deciding which part of the
line one wants to include the number 1 when creating the cut.

The preceding is a little disingenuous in that we might expect to see
multiple decimal representations for all rational numbers, which we do not.
However, we do have multiple representations for all a

b
6= 0 in base b (where

a and b are integers with b > 0). Thus, the multiple representations has
something to do with the base of the representation also.
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Chapter 6

Classical Numbers

In this chapter, we shall discuss the important numbers e and π and the
functions associated with them. While π is more commonly dealt with in the
schools, the treatment here will begin with the number e. We have already
briefly dealt with e on several occasions. In particular, in chapter 2, we gave
several proofs that e is irrational. We also mentioned in chapter 4 that e is
transcendental, and briefly discussed the complex plane. Similarly, we have
already spent some time on π in the text, proving its irrationality and stat-
ing that it too is transcendental. Our goal in this chapter is to discuss the
historical development of the logarithmic function and the function ex. After
discussing e, our next goal will be to discuss the number π, spending a little
time on how one finds the billions of digits of π that we know today. After-
wards, we shall spend some time discussing the trigonometric functions and
how one might define them in a more natural way in the high school class-
room. As always, Klein’s book Elementary Mathematics from an Advanced
Standpoint is a major basis for our discussion.

6.1 The Logarithmic Function

In the schools, the logarithmic functions are naturally introduced as the
inverse function of the exponential function y = bx where b is a fixed positive
number, and we write x = logb(y). To do so, we begin by restricting x to
the positive integers, and then slowly building up values for bx when x is a
negative number, and then a rational number. At each step, we do so by
appealing to the multiplicative formula ba+c = babc. As we get to rational
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values for x, we recognize that for all rational values to make sense, we must
restrict b to a positive number. At this point, we extend the function y = bx

to irrational numbers as necessary using the density of the rational numbers.
Of course, these texts never mention the idea that one could have allowed
b to be a negative number and simply restricted the rational numbers to
quotients of two odd integers, at which point, we could have appealed to the
density of these numbers to define the logarithm for all numbers. They avoid
this because to do so calls into play complex analysis, a topic well beyond
the secondary student. Rather, we simply inform students that b must be
positive for the logarithm to make sense.

The natural logarithmic function is often introduced as the inverse func-
tion of the exponential function ex where e is the natural base of the logarith-
mic function, the number 2.718281828459045 . . .. To do this, the standard
text uses the idea of compound interest. The idea being that if one invests
P dollars in the bank and it compounds monthly at 100% interest (12 times
a year), then at the end of one year, you have P (1 + 1

12
)12 dollars. Alterna-

tively, if you compound the interest daily (banks use 360 days a year) you
have P (1 + 1

360
)360 dollars. Continuing in this fashion, if you compound it

instantaneously , then at the end of one year you have

P · lim
n→∞

(1 +
1

n
)n

dollars. At this point, we define the number e to be the limit. One can then
define ex similarly as

ex = lim
n→∞

(1 +
x

n
)n.

Unfortunately, this definition does not do much for students attempting
to gain an understanding of the number e and why it should arise mathe-
matically. Let us turn to the historical development of the number e and the
logarithmic function so that we can gain a better understanding.

The first logarithmic tables were published by the Scottish mathematician
John Napier (1550-1617) in 1614. His methods for calculating these tables
appeared after his death in 1619. For the basis of his logarithmic function,
Napier chose the number .999999999, as he was interested in applying loga-
rithms to trigonometric functions, where one deals primarily with numbers
less than 1 (and Napier’s choice made the logarithms of such numbers posi-
tive). The Swiss mathematician Jobst Bürgi published his set of log tables
in 1620 independently of Napier using the base b = 1.0001.
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Both Napier and Bürgi calculated their logarithms by trying to solve the
equation x = by for integer values of y, and try to find an arrangement where
the known values of these numbers are as close together as possible. In the
modern treatment, we allow for y to be a rational number, thus squeezing
together the values of by. Napier and Bürgi, however, both hit upon the
useful idea of taking b very close to 1, so that for integer values of y, the
numbers x are close together. Even so, calculations would appear to be very
complicated. (Try raising 1.0001 to the 5000th power by hand.) However,
using the idea of difference methods, if we take Bürgi’s base, we can work
inductively. That is, if we know that x = (1 + 10−4)y, then letting

x+ ∆x = (1 + 10−4)y+1 = x(1 + 10−4),

we obtain that ∆x = fracx104. Letting ∆y = 1 (the difference in the
y values in this case, we obtain the difference equation (or essentially an
approximation of the derivative)

∆y

∆x
=

104

x
.

Thus, if we know the logb(x), then

logb(x+ δ) = logb(x) + δ
104

x
.

In fact, this is essentially how Bürgi did his calculations. In a similar way,
Napier’s logarithms satisfy a difference equation of

∆y

∆x
= −107

x
.

At this point it is worthwhile to notice that if we take as our base (1.0001)10000,
we only change the decimal in the logarithm. Moreover, the new base in this
case is 2.718146, which is extremely close to e!

At this point, we should take a geometric look at what we have. In
particular, taking the function y = 1

x
, and starting at x = 1, we arrive at a

sum, z =
∑ ∆x

x
, where z is the value of the logarithm, and x and ∆x change

throughout the sum so that the rectangle having height 1
x

(the y value on
the curve at x) and width ∆x. At this point the picture should remind us
of the approximations of the integral, and in fact, one can define the natural
logarithm by

ln(a) =
∫ a

1

1

x
dx.
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This is the historical treatment and the main step was taken in 1650, when
the infinitesimal calculus was attacking the problems of the area under (or
the quadature of) various curves. Nicolas Mercator (1620-1687) was in the
forefront of making this definition and is responsible for the name “natural
logarithm.”

Before examining this definition more carefully, we should note that the
English mathematician Henry Briggs (1566-1630) recognized the calcula-
tional value of having logarithms base 10, and it was he who first introduced
them in 1617.



Chapter 7

Cardinality Questions
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Chapter 8

Finite Difference Methods
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