
Comments and Selected Solutions
Homework II

General Comments for All Assignments:

• Please be neat. If you are writing out problems by hand, please use
every other line. To make comments, I need a place to write. Also,
please leave sufficient margins.

• Using symbols in a sentence is inappropriate mathematical writing
style. Symbols for “there exists,” “implies,” “such that,” etc. should
only be used in a symbolic sentence.

• You should make sure that you look at the assignment the first day,
so that you are not caught by surprise by lines like: “find someone to
interview”.

• If you are having difficulties with an assignment, please see me. Many
of the homework problems are difficult. I expect to see people to discuss
some of the homework problems. If you visit my office, I can answer
your questions, and work with you to see what you are having difficul-
ties with, and try and specifically address those issues. I teach best in
my office, please try and take advantage of this from time to time.

• Please staple your papers whenever possible. If you cannot staple,
please just fold a corner over, but do not tear the corner. I will try and
staple papers at home if they are not stapled. Torn corners just make
things harder to deal with.

• Please do not use torn out spiral notebook paper with the fringes left.
This makes it much harder for me to keep the homework neat.

Specific Comments on Assignment 2

• Mathematical proofs are often written so that they are easy to check in
a step by step way. That is, each sentence of the proof should be easy
to check for truth. When reading a proof, check each sentence and see
if it makes sense by itself. After you have done this, go back over the
whole proof and try and find what the overall theme is.
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• When generalizing a proof, you should check to understand each sen-
tence of the proof to see if it makes sense in the changed context. In
particular, if you quote a theorem, you should check to make sure that
the hypotheses are still correct. If you make a mathematical statement,
you should make sure that the changed statement is correct. Also, you
should make sure that the pieces still fit together correctly. Some spe-
cific examples from this assignment

1. On the proof that
√

7 is irrational, one might say: “Suppose
√

7 is
rational. Then

√
7 = x

y
for some integers x and y, such that either

x or y is odd. Now 7y2 = x2 so that 7 divides x2; by Euclid’s
Lemma, 7 divides x. Writing x = 7k, we have that 7y2 = (7k)2 =
49k2. Dividing by 7, we obtain y2 = 7x2, and by Euclid’s lemma
again, we have 7 divides y. Thus x

y
is not in least terms, yielding

a contradiction.

However, in this case, the writer has never assumed that x and y
have no common factor, so no contradiction has been reached.

2. On the proof that
√

21 is irrational, someone might try and apply
Euclid’s lemma to see that if x2 = 21y2, then 21 divides x. While
it is true that 21 must divide x in this case, it is not the case
that Euclid’s lemma is what tells it to us, since Euclid’s lemma
assumes the divisor is prime.

• Some mathematics problems are very hard. It is fine with me if you
can’t solve everything. If you run into a problem on a proof, you should
get to where you have the problem, and then note that you are stuck
at this stage. At that point, tell me what you would like to be true to
continue the proof (in the second case above, you would say something
like: “I would like to use Euclid’s lemma to say that 21 divides x, but it
doesn’t apply here. Assuming that result is still true, however, I would
...”

• I realize it is a pain in the neck to rewrite similar proofs. If you truly
want to avoid this, then you should prove a preliminary lemma before
the assignment starts, which covers all the cases. Otherwise, please
rewrite the proof. I find it very difficult to point out where the mistake
is, when the proof says, “Simply put 21 in where 7 was previously,” or
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similar to problem #5. I have tried very hard to not have too many
problems actually too much alike (I don’t always succeed).

• Problem 11 on this set was too difficult. I am sorry about that. This
doesn’t mean that people didn’t get it, simply that I regret having
assigned it.

Selected Solutions and Comments on Problems.

1. The 57th digit is 1, and the period is 96. It appears that everyone either
has a spreadsheet program or a calculator for this now.

2. Again, it looks like everyone has this set up properly, but a few people
ran into a few problems. In general, we say that a terminating fraction has
period 1 because the 0s repeat. The table that I have is:

n period n period n period n period
1 1 2 1 3 1 4 1
5 1 6 1 7 6 8 1
9 1 10 1 11 2 12 1
13 6 14 6 15 1 16 1
17 16 18 1 19 18 20 1
21 6 22 2 23 22 24 1
25 1 26 6 27 3 28 6
29 28 30 1 31 15 32 1
33 2 34 16 35 6 36 1
37 3 38 18 39 6 40 1
41 5 42 6 43 21 44 2
45 1 46 22 47 46 48 1
49 42 50 1 51 16 52 6
53 13 54 3 55 2 56 6
57 18 58 28 59 58 60 1

The decimal expansion for 1
17

is .0588235294117647, and the expansion for
1
19

is .052631578947368421.

3. In this case, the number kn is equal to the period of 1
n

if n is not divisible
by 2 or 5. We will prove this later on. If n is divisible by 2 or 5, then kn
does not exist.
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5. (Proofs that
√

7 is irrational.)
Proof 1: Suppose

√
7 = a

b
with a, b ∈ Z. Using the fundamental theorem of

arithmetic, we may assume that 7 does not divide both a and b. Multiplying
our original equation by b and squaring both sides, we see that a2 = 7b2. Thus
7 divides a2. By Euclid’s lemma, 7 divides a. As 7 divides a, it follows that
a = 7t for some integer t. Plugging this into the equation a2 = 7b2, we obtain
(7t)2 = 7b2. Thus 7t2 = b2, and 7 divides b2. Again by Euclid’s Lemma, 7
must divide b. This contradicts that not both of a and b were divisible by 7.
Consequently, our initial assumption must have been incorrect, and it follows
that

√
7 is irrational.

Proof 2: Suppose
√

7 is rational. Then
√

7 = a
b

for some non-negative

integers a and b. Define V = {q ∈ N | q
√

7 ∈ Z}. As b ∈ V , we have that V
is non-empty. By the well-ordering principle, V has a least element (we are
assuming N does not contain 0 for this proof). Call this element q. Since
2 <
√

7 < 3, it follows that 2q < q
√

7 < 3q. Let p = q
√

7, and note that p is
an integer since q ∈ V .

Our goal is to show that p − 2q ∈ V and 0 < p − 2q < q as this would
contradict that q is the least element of V . First note that 2q < q

√
7 < 3q

implies 2q < p < 3q so that 0 < p− 2q < q. Moreover as q
√

7 = p,

(p− 2q)
√

7 = p
√

7− 2q
√

7

= (q
√

7)
√

7− p
= 7q − 2p.

Thus (p − 2q)
√

7 ∈ Z and p − 2q ∈ N , implying that p − 2q ∈ V . As
p− 2q < q, we have contradicted that q is the least element of V . Thus our
initial assumption that

√
7 is rational must be wrong. Consequently,

√
7 is

irrational.

Proof 3: Suppose
√

7 = a
b
, where a and b are positive integers. As 2 <√

7 < 3, it follows that 0 <
√

7− 2 < 1. As a result, (
√

7− 2)n can be made
as small as possible. (The limit as n goes to infinity is 0.) Note that Z[

√
7]

is a ring and is thus closed under multiplication. Hence for each n ∈ N ,
(
√

7− 2)n ∈ Z[
√

7], implying that there exists integers An and Bn such that
(
√

7−2)n = An+Bn

√
7. Choosing n sufficiently large so that |(

√
7−2)n| < 1

b
,

we then have that |An +Bn

√
7| < 1

b
. However,

An +Bn

√
7 = An +Bn

a

b
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=
Anb+Bna

b
.

As
√

7− 2 > 0, this quantity is positive, and as the numerator is an integer,
it follows that An + Bn

√
7 ≥ 1

b
. This contradicts our earlier statement, and

hence our initial assumption must be incorrect. Thus
√

7 is irrational.

6.(Proofs that
√

21 is irrational.)
Proof 1: Suppose

√
21 = a

b
with a, b ∈ Z. Using the fundamental theorem of

arithmetic, we may assume that 3 does not divide both a and b. Multiplying
our original equation by b and squaring both sides, we see that a2 = 21b2.
As 3 divides 21b2, 3 divides a2. By Euclid’s lemma, 3 divides a. As 3 divides
a, it follows that a = 3t for some integer t. Plugging this into the equation
a2 = 21b2, we obtain (3t)2 = 21b2. Thus 3t2 = 7b2, and 3 divides 7b2.
Using either a corollary to Euclid’s Lemma or the Fundamental Theorem of
Arithmetic, we get that 3 must divide b2. This contradicts that not both of
a and b were divisible by 3. Consequently, our initial assumption must have
been incorrect, and it follows that

√
21 is irrational.

Proof 2: Suppose
√

21 is rational. Then
√

21 = a
b

for some non-negative

integers a and b. Define V = {q ∈ N | q
√

21 ∈ Z}. As b ∈ V , we have that
V is non-empty. By the well-ordering principle, V has a least element (we
are assuming N does not contain 0 for this proof). Call this least element q.
Since 4 <

√
21 < 5, it follows that 4q < q

√
21 < 5q. Let p = q

√
21, and note

that p is an integer since q ∈ V .
Our goal is to show that p − 4q ∈ V and 0 < p − 4q < q as this would

contradict that q is the least element of V . First note that 4q < q
√

21 < 5q
implies 4q < p < 5q so that 0 < p− 4q < q. Moreover as q

√
21 = p,

(p− 4q)
√

21 = p
√

21− 4q
√

21

= (q
√

21)
√

21− 4p

= 21q − 4p.

Thus (p − 4q)
√

21 ∈ Z and p − 4q ∈ N , implying that p − 4q ∈ V . As
p− 4q < q, we have contradicted that q is the least element of V . Thus our
initial assumption that

√
21 is rational must be wrong. Consequently,

√
21

is irrational.

Proof 3: Suppose
√

21 = a
b
, where a and b are positive integers. As 4 <√

21 < 5, it follows that 0 <
√

21 − 4 < 1. As a result, (
√

21 − 4)n can
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be made as small as possible. (The limit as n goes to infinity is 0.) Note
that Z[

√
21] is a ring and is thus closed under multiplication. Hence for each

n ∈ N , (
√

21− 4)n ∈ Z[
√

21], implying that there exists integers An and Bn

such that (
√

21 − 4)n = An + Bn

√
7. Choosing n sufficiently large so that

(
√

21− 4)n < 1
b
, we then have that |An +Bn

√
21| < 1

b
. However,

An +Bn

√
21 = An +Bn

a

b

=
Anb+Bna

b
.

As
√

21−4 > 0, this quantity is positive, and as the numerator is an integer,
it follows that An +Bn

√
21 ≥ 1

b
. This contradicts our earlier statement, and

hence our initial assumption must be incorrect. Thus
√

21 is irrational.

7. Suppose
√

8 is rational. As the product of two rational numbers is rational,
it follows that 1

2

√
8 is also irrational. However, 1

2

√
8 =
√

2, which we know is
irrational. Consequently, our original assumption must have been false, and√

8 is irrational.

11. The most precise conjecture we could make is:
If n ∈ N is divisibly by neither 2 nor 5, then the least positive integer kn such
that n divides 10kn − 1 is the period of 1

n
.

Proof: Let us first assume that t is the period of 1
n
. By the text, it follows

that 1
n

= α
10t−1

, where α is an integer (note, this is where we are using that
neither 2 nor 5 divides n). Thus, cross-multiplying yields that

10t − 1 = α · n.

Consequently, n divides 10t−1. It remains to check that t is the least positive
integer kn such that n divides 10kn−1.

Suppose n divides 10s − 1 for some positive integer s, and let qi denote
the ith digit of the decimal expansion for 1

n
and ri denote the ith remainder

in the algorithm for finding the decimal expansion. That is,

1 = n · q0 + r1

10r1 = n · q1 + r2

10r2 = n · q2 + r3

and so on, where 0 < ri < n. We claim that ri is the remainder of 10i−1 upon
division by n, for i = 1, 2, . . .. We prove this by induction. For i = 1, this is
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the definition of r1. Fix k > 1 and suppose that rk−1 is the remainder of 10k−2

upon division by n. At this point, we consider our algorithm modulo n. Since
rk−1 is the remainder of 10k−2 upon division by n, 10rk−1 ≡ 10k−1 modulo
n. But the kth equation states 10rk−1 ≡ 0 + rk modulo n. Consequently,
10k−1 ≡ rk modulo n. Since 0 ≤ rk < n, it follows that rk is the remainder of
10k−1 upon division by n as claimed. The claim now follows by the principle
of mathematical induction.

The above claim implies that rs+1 = 1. Thus, the digit qs+1 is the same
as the digit q1. But this together with rs+1 = 1 implies that rs+2 = r2.
Continuing inductively, we have that qs+k = qk for all k, and thus the period
is less than or equal to s.

Thus the period of 1
n

must be the least kn such that n divides 10kn − 1.

12. The fraction a
b

written in lowest terms has a terminating decimal expan-
sion if and only if b divides 10k for some non-negative integer k.
Proof: If a

b
has a terminating decimal, then a

b
= α

10k
for some non-negative

integer k. Cross-multiplying, we have a · 10k = b · α. Thus, if a
b

is in lowest
terms, we have gcd(a, b) = 1, and a corollary to Euclid’s Lemma implies that
b divides 10k. Conversely, if b divides 10k, then 10k = b · x for some integer
x, and then a

b
= ax

10k
, so that a

b
must have a terminating decimal.

14. (Proofs that
√

28 is irrational.)
Proof 1: Suppose

√
28 = a

b
with a, b ∈ Z. Using the fundamental theorem of

arithmetic, we may assume that 7 does not divide both a and b. Multiplying
our original equation by b and squaring both sides, we see that a2 = 28b2.
Thus 7 divides a2. By Euclid’s lemma, 7 divides a. As 7 divides a, it follows
that a = 7t for some integer t. Plugging this into the equation a2 = 28b2,
we obtain (7t)2 = 28b2. Thus 7t2 = 4b2, and 7 divides b2. By a corollary to
Euclid’s Lemma, 7 must divide b. This contradicts that not both of a and
b were divisible by 7. Consequently, our initial assumption must have been
incorrect, and it follows that

√
28 is irrational.

Proof 2: Suppose
√

28 is rational. Then
√

28 = a
b

for some non-negative

integers a and b. Define V = {q ∈ N | q
√

28 ∈ Z}. As b ∈ V , we have that
V is non-empty. By the well-ordering principle, V has a least element (we
are assuming N does not contain 0 for this proof). Call this element q. Since
5 <
√

28 < 6, it follows that 5q < q
√

28 < 6q. Let p = q
√

28, and note that
p is an integer since q ∈ V .
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Our goal is to show that p − 5q ∈ V and 0 < p − 5q < q as this would
contradict that q is the least element of V . First note that 5q < q

√
7 < 6q

implies 5q < p < 6q so that 0 < p− 5q < q. Moreover as q
√

28 = p,

(p− 5q)
√

28 = p
√

28− 5q
√

28

= (q
√

28)
√

28− 5p

= 28q − 5p.

Thus (p − 5q)
√

28 ∈ Z and p − 5q ∈ N , implying that p − 5q ∈ V . As
p− 5q < q, we have contradicted that q is the least element of V . Thus our
initial assumption that

√
28 is rational must be wrong. Consequently,

√
28

is irrational.

Proof 3: Suppose
√

28 = a
b
, where a and b are positive integers. As 5 <√

28 < 6, it follows that 0 <
√

28 − 5 < 1. As a result, (
√

28 − 5)n can
be made as small as possible. (The limit as n goes to infinity is 0.) Note
that Z[

√
28] is a ring and is thus closed under multiplication. Hence for each

n ∈ N , (
√

28− 5)n ∈ Z[
√

28], implying that there exists integers An and Bn

such that (
√

28 − 5)n = An + Bn

√
28. Choosing n sufficiently large so that

|(
√

28− 5)n| < 1
b
, we then have that |An +Bn

√
28| < 1

b
. However,

An +Bn

√
28 = An +Bn

a

b

=
Anb+Bna

b
.

As
√

28−5 > 0, this quantity is positive, and as the numerator is an integer,
it follows that An +Bn

√
28 ≥ 1

b
. This contradicts our earlier statement, and

hence our initial assumption must be incorrect. Thus
√

28 is irrational.

Problem II: Suppose 2/3 of the men in a particular town are married, and
3/5 of the women are married. Let K denote the number of marriages, M
denote the number of men in the town, and W denote the number of women.
Then

2

3
M = K

3

5
W = K.
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Clearing denominators, we obtain that

2M = 3K

3W = 5K.

Consequently, K must be divisible by 2 and 3, and hence must be divisible
by 6. Letting K = 6t, we have that M = 9t and W = 10t. Since the number
of married people in the town is 2K, and the number of people in the town
is M +W , it follows that the fraction of married people in the town is

2 · 6t
9t+ 10t

= 1219.

The key step in this proof is recognizing that the number of marriages is
what you need to count. (Equivalently, one might say the key is recognizing
that 2

3
M = 3

5
W , although then the algebra can be a little less pleasant.) The

difficulty that many people face with this problem is that they are scared of
fractions and don’t like thinking about what they represent. A very common
reaction of students to all word problems is to find the numbers in the prob-
lem and try and manipulate them. A second problem faced is that one needs
to either put in a supplemental variable (the number of marriages), or be
able to manipulate fractions to find the appropriate equivalent fractions to
deal with. In this case, to solve the problem, purely algebraically, you have to
manipulate some ugly looking terms like (2/3)M+(2/3)M

M+(10/9)M
, which requires adding

and dividing fractions. Students mostly do these tasks by rote memorization
of algorithms, which means that when they need to do them a year later,
they will often make mistakes.

An interesting way to teach this problem is to have students try and
actually create a town having these proportions. Fairly quickly, they will see
the need for a common multiple of 2 and 3 to be the number of marriages.
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